Concurrency Runtime
– 동기화 객체 2. ( event )

작성자: 임준환( mumbi at daum dot net )

 

시작하는 글

 지난 글에 이어서 Concurrency Runtime 에서 제공하는 동기화 객체에 대해서 알아보도록 하겠습니다.

이번 글에서는 event 에 대해서 알아보겠습니다.

 

event

 event 는 어떤 상태를 나타낼 수 있는 동기화 객체입니다.

 event 는 어떤 공유 데이터에 대한 접근을 동기화하는 것이 아니라 실행의 흐름을 동기화합니다.

 어떤 작업이 완료되기를 기다렸다가 진행될 수 있고, 어떤 상태를 외부에 알릴 수도 있습니다.

 event 는 기본적으로 2가지 상태를 갖습니다. 설정된 상태( 시그널된 상태라고도 합니다. )와 설정되지 않은 상태를 가지고 있고, 플래그의 역할을 할 수 있습니다.

 event 는 자신의 상태가 설정될 때까지 기다리는 기능을 가지고 있어서 실행의 흐름을 동기화할 수 있습니다.

  Windows API 의 이벤트 객체와 유사합니다. 다른 점은 event 는 협조적이라는 것입니다. wait() 에 의해 대기하고 있을 때, 대기 중인 스레드 자원을 다른 작업에 사용하여 더욱 효율적인 스케쥴링을 하게 됩니다.

 

멤버 함수

 생성자와 소멸자를 제외한 public 인 멤버 함수들에 대해 알아보도록 하겠습니다.

 

void set()

 event 를 설정합니다.

 wait() 로 기다리던 event 는 계속해서 진행하게 됩니다.

 

void reset()

 event 를 설정하지 않습니다. 즉, 초기 상태로 되돌립니다.

 

size_t wait(unsigned int _Timeout = COOPERATIVE_TIMEOUT_INFINITE)

 event 가 설정될 때까지 기다립니다.

 매개변수인 _Timeout 은 기다리는 최대 시간을 지정할 수 있습니다. 기본 매개변수인  COOPERATIVE_TIMEOUT_INFINITE 는 무한대를 나타냅니다.

 event 가 설정되어 기다리는 것을 멈추고 계속 진행될 때, wait() 는 0 을 반환합니다. 반면에 지정한 최대 시간을 초과하여 기다리는 것을 멈추고 계속 진행될 때는 COOPERATIVE_WAIT_TIMEOUT( 0xffffffff ) 를 반환합니다.

 

static size_t __cdecl wait_for_multiple(event ** _PPEvents, size_t _Count, bool _FWaitAll, unsigned int _Timeout = COOPERATIVE_TIMEOUT_INFINITE);

 정적 멤버 함수로 여러 개의 event 를 기다립니다.

 매개 변수인 _PPEvents 는 event 의 포인터 배열입니다.

 매개 변수인 _Count 는 기다릴 event 의 개수입니다.

 매개 변수인 _FWaitAll 은 지정된 event 들이 모두 설정될 때까지 기다릴 것인지 여부입니다. false 를 지정하면 하나의 event 라도 설정되면 기다리는 것을 멈추고 계속 진행됩니다.

 마지막 매개 변수인 _Timeout 은 최대 시간입니다. 기본 매개 변수인 COOPERATIVE_TIMEOUT_INFINITE 는 무한대를 나타냅니다.

 매개 변수 중 _FWaitAll 을 false 로 지정하고, 하나의 event 가 설정되었을 때, 설정된 event 의 _PPEvents 로 지정된 배열의 인덱스가 반환됩니다.

 _FWaitAll 을 true 로 지정했을 경우에 모든 event 가 설정되었을 때에는 COOPERATIVE_WAIT_TIMEOUT 이 아닌 값이 반환됩니다.

 Windows API 의 이벤트 객체를 사용할 때 함께 사용하는 WaitForMultipleObject() 와 유사합니다.

 

예제

 Windows API 의 이벤트 객체와 어떻게 다른지 알아볼 수 있는 예제를 구현해보겠습니다.

 

시나리오

 우선 최대 2개의 작업이 동시에 수행될 수 있도록 설정합니다.

 그리고 하나의 event 를 생성한 후, 5개의 작업을 병렬로 처리합니다. 각 작업마다 생성한 event 가 설정될 때까지 기다리도록 합니다.

 메인 스레드에서 1 초 후에 그 event 를 설정합니다.

 같은 작업을 Windows API 의 이벤트 객체를 사용해서 구현합니다.

 

코드

// 코드의 출처는 msdn 입니다.
#include <windows.h>
#include <concrtrm.h>
#include <ppl.h>
#include <iostream>
#include <sstream>

using namespace Concurrency;
using namespace std;

// Demonstrates the usage of cooperative events.
void RunCooperativeEvents()
{
   // An event object.
   event e;

   // Create a task group and execute five tasks that wait for
   // the event to be set.
   task_group tasks;
   for (int i = 0; i < 5; ++i)
   {
      tasks.run([&] {
         // Print a message before waiting on the event.
         wstringstream ss;
         ss << L"\t\tContext " << GetExecutionContextId() 
            << L": waiting on an event." << endl; 
         wcout << ss.str();

         // Wait for the event to be set.
         e.wait();

         // Print a message after the event is set.
         ss = wstringstream();
         ss << L"\t\tContext " << GetExecutionContextId() 
            << L": received the event." << endl; 
         wcout << ss.str();
      });
   }

   // Wait a sufficient amount of time for all tasks to enter 
   // the waiting state.
   Sleep(1000L);

   // Set the event.

   wstringstream ss;
   ss << L"\tSetting the event." << endl; 
   wcout << ss.str();

   e.set();

   // Wait for all tasks to complete.
   tasks.wait();
}

// Demonstrates the usage of preemptive events.
void RunWindowsEvents()
{
   // A Windows event object.
   HANDLE hEvent = CreateEvent(NULL, TRUE, FALSE, TEXT("Windows Event"));

   // Create a task group and execute five tasks that wait for
   // the event to be set.
   task_group tasks;
   for (int i = 0; i < 5; ++i)
   {
      tasks.run([&] {
         // Print a message before waiting on the event.
         wstringstream ss;
         ss << L"\t\tContext " << GetExecutionContextId() 
            << L": waiting on an event." << endl; 
         wcout << ss.str();

         // Wait for the event to be set.
         WaitForSingleObject(hEvent, INFINITE);

         // Print a message after the event is set.
         ss = wstringstream();
         ss << L"\t\tContext " << GetExecutionContextId() 
            << L": received the event." << endl; 
         wcout << ss.str();
      });
   }

   // Wait a sufficient amount of time for all tasks to enter 
   // the waiting state.
   Sleep(1000L);

   // Set the event.

   wstringstream ss;
   ss << L"\tSetting the event." << endl; 
   wcout << ss.str();

   SetEvent(hEvent);

   // Wait for all tasks to complete.
   tasks.wait();

   // Close the event handle.
   CloseHandle(hEvent);
}

int wmain()
{
   // Create a scheduler policy that allows up to two 
   // simultaneous tasks.
   SchedulerPolicy policy(1, MaxConcurrency, 2);

   // Attach the policy to the current scheduler.
   CurrentScheduler::Create(policy);

   wcout << L"Cooperative event:" << endl;
   RunCooperativeEvents();

   wcout << L"Windows event:" << endl;
   RunWindowsEvents();
}

[ 코드1. event 와 Windows API 이벤트 객체와의 차이 ]

 event 의 경우 5 개의 작업 중 동시에 2개가 수행되도록 하여 2 개의 작업이 기다리고 있을 때, 기다리는 스레드 자원은 다른 작업을 하게 됩니다. 이것이 바로 협력적인 스케쥴링입니다.

 반면에 Windows API 의 이벤트 객체를 사용할 경우, 2 개의 작업이 다시 시작될 때까지 스레드 자원은 낭비를 하게 됩니다.

 

 

[ 그림1. event와 Windows API 이벤트 객체와의 차이 예제 결과 ]

[ 그림1. event와 Windows API 이벤트 객체와의 차이 예제 결과 ]

 

마치는 글

 Concurrency Runtime 에서 제공하는 동기화 객체인 event 까지 알아보았습니다. 이렇게 해서 제공하는 모든 동기화 객체를 알아보았습니다.

 동기화 객체도 알아보았으니 이제 사용자 정의 message block 을 구현할 준비가 다 된 것 같습니다.

 다음 글에서는 제공하는 message block 이 외에 사용자가 구현사여 사용하는 message block 에 대해서 알아보겠습니다.

신고

Concurrency Runtime
– 동기화 객체 1. ( critical_section & reader_writer_lock )

작성자: 임준환( mumbi at daum dot net )

 

시작하는 글

 기본적으로 Asynchronous Agents Library( 이하 AAL ) 에서 제공하는 message block 들은 스레드에 안전합니다. 이 말은 내부적으로 동기화를 구현하고 있다는 말입니다.

 하지만 Concurrency Runtime 을 이용한 동시 프로그래밍을 할 때 AAL 의 message block 을 사용하지 않고 일반적인 사용자 변수들을 사용할 수 있습니다. 하지만 이런 변수들은 동기화가 되지 않아 직접 동기화를 해 주어야 합니다.

 이 때 Windows API 의 유저 모드 혹은 커널 모드의 동기화 객체를 사용할 수 있지만, Concurrency Runtime 에서 제공하는 동기화 객체를 쉽게 사용할 수 있습니다.

 이번 글에서는 Concurrency Runtime 에서 제공하는 동기화 객체들에 대해서 알아보도록 하겠습니다.

 

critical_section

 임계 영역을 의미하는 객체로, 어떤 영역을 잠그고 풀 수 있습니다. 잠긴 영역에 도달한 다른 스레드는 잠김이 풀릴 때까지 기다려야 합니다. 그러므로 해당 영역을 모두 사용한 후에는 다른 스레드도 사용할 수 있도록 풀어주어야 합니다.

 이 기능은 Windows API 에서 제공하는 유저 모드 동기화 객체인 CRITICAL_SECTION 과 같은 기능을 합니다.

 

멤버 함수

 생성자와 소멸자를 제외한 public 인 멤버 함수들에 대해서 알아보겠습니다.

 

void lock()

 해당 영역을 잠급니다. 잠근다는 의미는 영역의 접근 권한을 획득한다는 의미도 있습니다. 잠긴 영역에 도달한 다른 스레드들은 잠김이 풀릴 때까지 기다려야 합니다.

 

bool try_lock()

 해당 영역의 접근을 시도합니다. 이미 다른 스레드에 의해 잠겨있더라도 풀릴 때까지 기다리지 않고 반환합니다.

 이미 다른 스레드에 의해 잠겨있다면 false 를, 아니면 true 를 반환합니다.

 

void unlock()

 접근 영역의 접근 권한을 반환합니다. 즉, 잠금을 해제합니다. 이 함수가 호출된 후에 다른 스레드가 이 영역에 접근할 수 있습니다.

 

native_handle_type native_handle()

 native_handle_typecritical_section 의 참조입니다. 결국, 이 함수는 자기 자신의 참조를 반환합니다.

 

범위 잠금

 범위 잠금이란 코드 내의 블럭의 시작부터 블럭이 끝날 때까지 잠그는 것을 말합니다. 이것은 생성자에서 잠그고, 소멸자에서 잠금을 해제하는 원리( RAII – Resource Acquisition Is Initialization )로 구현되어 있으며, 굳이 unlock() 을 호출하지 않아도 된다는 편리함이 있습니다.

 

critical_section::scoped_lock

 critical_section 객체를 범위 잠금 객체로 사용합니다. 생성자로 critical_section 의 참조를 넘겨주어야 합니다. 스택에 할당되고 가까운 코드 블럭이 끝날 때, 소멸자가 호출되어 잠금이 해제됩니다.

 

reader_writer_lock

 reader_writer_lock 은 쓰기 접근 권한과 읽기 접근 권한을 구분하여 획득하고 잠글 수 있는 객체입니다.

한 스레드가 쓰기 접근 권한을 획득하여 잠긴다면, 다른 스레드의 모든 쓰기 / 읽기 접근 권한 획득시도가 실패하며 기다리게 됩니다.

 만약 한 스레드가 읽기 접근 권한을 획득하여 잠긴다면, 다른 스레드가 읽기 접근 권한 획득 시도 시, 동시에 읽기 접근 권한을 획득 가능합니다.

 위에 설명한 것처럼 2 가지 종류의 접근 권한이 있지만, 잠기는 것은 단 하나의 객체라는 것을 명심하셔야 합니다. 이 사실을 잊으면 헷갈릴 수 있습니다.

 reader_writer_lock 의 이와 같은 기능은 Windows API 의 SRW( Slim Reader Writer ) 잠금과 유사합니다. 다른 점이 있다면 reader_writer_lock 은 기본 잠금이 쓰기 잠금으로 되어 있고, 잠겼을 때 다른 스레드들이 기다린 순서대로 접근 권한을 얻는다는 것입니다. 즉, Windows SRW 는 기본 잠금이라는 개념이 없고, 기다린 스레드들 중 어떤 순서로 접근 권한을 얻는지 알 수 없습니다.

 

멤버 함수

 생성자와 소멸자를 제외한 public 인 멤버 함수들에 대해서 알아보겠습니다.

 

void lock()

 기본 잠금으로 쓰기 접근 권한을 획득하고 잠급니다. 이미 다른 스레드에서 접근 권한을 획득하여 잠겨 있다면 해제될 때까지 기다립니다.

 이 함수로 잠길 경우, lock() 과 읽기 접근 권한 획득 함수인 lock_read() 으로 접근 권한을 획득하려 하더라도 획득할 수 없고, 잠금이 해제될 때까지 기다리게 됩니다.

 

bool try_lock()

 쓰기 접근 권한 획득을 시도합니다. 이미 다른 스레드가 접근 권한을 획득하여 잠겼을 경우에는 false 를 반환하고, 접근 권한을 획득하게 되면 true 를 반환합니다. 즉, 대기하지 않습니다.

 

void lock_read()

 읽기 잠금으로 읽기 접근 권한 획득을 합니다. 다른 스레드에서 lock_read() 로 읽기 접근 권한 획득을 시도하면 이미 다른 스레드가 읽기 접근 권한을 획득하였다고 하더라도 동시에 읽기 접근 권한을 획득할 수 있습니다.

 다른 스레드에서 lock() 으로 쓰기 접근 권한 획득을 시도한다면, 이 스레드는 모든 읽기 권한으로 인한 잠금이 해제될 때까지 기다리게 됩니다.

 

bool try_lock_read()

 읽기 접근 권한 획득을 시도합니다. 이미 다른 접근 권한을 획득하여 잠겼을 경우에는 false 를 반환하고, 접근 궈한을 획득하게 되면 true 를 반환합니다. 즉, 대기하지 않습니다.

 

void unlock()

 어떤 잠금이든 해제합니다.

 

범위 잠금

 critical_section 과 마찬가지로 범위 잠금을 지원합니다.

 

reader_writer_lock::scoped_lock

 critical_section 과 같습니다. 다른 점이 있다면 이 잠금 객체는 쓰기 잠금의 범위 잠금 객체입니다.

 

reader_writer_lock:scoped_lock_read

 이 잠금 객체는 읽기 잠금의 범위 잠금 객체입니다.

 

마치는 글

 Concurrency Runtime 에서 제공하는 동기화 객체은 critical_sectionreader_writer_lock 에 대해서 알아보았습니다.

 reader_writer_lock 이 동시 읽기 접근이 가능하므로 critical_section 보다는 상황에 따라 성능이 좋을 수 있습니다.

 다음 글에서는 동기화 객체 중 마지막 하나, event 에 대해서 알아보도록 하겠습니다.

신고