Welcome to Dynamic C#(5) - Return to Dynamic.

C# 2009. 8. 26. 15:02 Posted by 알 수 없는 사용자

- 그때 너 너무 대충하더라

제가 맨 처음 dynamic에 대한 포스트로 Welcome to Dynamic시리즈를 시작했는데요. 뭐랄까 너무 추상적인 내용위주로 진행했다는 생각이 들더군요. 그리고 공부를 더 하다보니 그런 생각이 더 확실해지더군요. 없는 input에서 output이 나올수는 없는거니 당연한 이야기 겠지요. 캬캬캬. 앞으로는 dynamic과 DLR에 대해서 이야기를 조금 진행해보려고 합니다. 그래봤자 여전히 별 내용없거나 다른분들이 주는 insight를 그대로 전해주는 역할 이상은 못할지도 모르지만 일단 늘 그래왔듯이 노력해보겠습니다. 따쓰한 피드백을. ㅋㅋㅋㅋ


- dynamic?

dynamic d = ....;
d.Foo();

여기서 지역변수인 d는 dynamic타입을 가집니다. dynamic은 엄연히 컴파일러가 지원하는 타입이고, 타입이름이 들어갈 수 있는 곳에는 어디든지 dynamic이라고 명시해줄 수 있습니다. 즉, 실제타입이 동적으로 결정되는 것을 의미하는 정적인 타입인거죠. 차이점이라고 한다면, Foo라는 메서드를 호출하는 IL코드를 바로 만든다기 보다는 DLR과 C# 런타임 바인더를 통해서 dynamic call site라는 걸 호출되는 지점에서 생성합니다. 

이런 기능을 통해서 여러분이 기존에 써오던 친숙한 방법과 모습으로 파이썬이나 루비, 혹은 "스스로 어떻게 실행해야 하는지 알고있는" 객체들을 사용할 수 있게 해줍니다. 개인적으로는 이 부분이 꽤나 중요한 부분이라고 생각합니다. 다른 동적언어들이 있는데, 굳이 C#에 이런 기능이 들어가는건 앤더스 헬스버그의 철학답게, 기존에 잘 사용해오던 언어에 새로운 기능을 잘 통합시켜서 한 부분에만 특화된 언어보다 기존의 언어에서도 새로운 기능을 사용할 수 있게 해주는 거겠죠. 그래서 기존에 잘 사용해오던 언어가 새로운 요구에 발맞추는 새로운 표현법을 계속해서 잘 통합시켜 나가면서 생명력을 유지할 수 있게 말이죠.

위에서 말씀드렸듯이 dynamic은 분명히 존재하는 타입이고 컴파일러도 잘 알아듣는 타입이지만, 현재까지의 모습으로 봤을땐 실제로는 존재하지 않는 타입입니다. DLR과의 연동을 통해서 가능한 동적인 프로그래밍을 문법적으로 편리하게 만들어주는 syntatic sugar같은 역할이라고 볼 수 있을까요? 일단 아래코드를 보시져.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Reflection;

namespace ConsoleApplication2
{
    class Program
    {
        public dynamic DynamicCall(dynamic d)
        {
            object obj = 5;
            return d.Foo();
        }

        static void Main(string[] args)
        {           
        }
    }
}


그리고 이 코드에서 타입위에 마우스를 가져가 보시져. object와 dynamic을 비교해보겠습니다.




object위에 마우스를 올렸을때는 "class System.Object"라고 나오는데, dynamic에는 그런 표시가 없죠? 그럼 우리의 심증을 물증으로 굳혀보겠습니다. 위의 코드를 컴파일한 코드를 리플렉터에서 보면 아래와 같습니다.

----- 리스트 1 -----

[return: Dynamic]
public object DynamicCall([Dynamic] object d)
{
    if (<DynamicCall>o__SiteContainer0.<>p__Site1 == null)
    {
        <DynamicCall>o__SiteContainer0.<>p__Site1 =
            CallSite<Func<CallSite, object, object>>.Create(
                new CSharpInvokeMemberBinder(
                    CSharpCallFlags.None, "Foo", typeof(Program), null,
                    new CSharpArgumentInfo[] {
                        new CSharpArgumentInfo(CSharpArgumentInfoFlags.None, null) }));
    }

    return <DynamicCall>o__SiteContainer0.
                    <>p__Site1.Target(<DynamicCall>o__SiteContainer0.<>p__Site1, d);
}

dynamic이라는 타입은 싹 사라지고 object만 덩그러니 있는걸 확인할 수 있습니다. 그리고 dynamic이라고 알려주는 지시자같은게 붙어있는걸 보실 수 있습니다. 즉 beta1기준으로 현재에는 dynamic은 엄연히 하나의 타입이지만, 닷넷 프레임워크 내부적으로는 dynamic이라는 타입이 존재하지 않는다는 말입니다. 즉, 저렇게 dynamic이라고 표시가 된 객체는 컴파일러가 런타임에게 동적으로 처리되어야 한다는 걸 알려주는게 되겠죠.

그리고 위에서 말씀드렸듯이 컴파일러는 dynamic과 관계된 연산을 만나게 되면, DLR을 통해서 DLR의 call site를 이용하는 코드를 생성합니다. 코드에 보시면 'SiteContainer', 'CallSite'같은게 보이시죠? DLR에 기반한 동적언어에서 어떤 동적 연산을 호출하면 그 코드는 DLR이 이해할 수 있는 기본적인 연산으로 번역되고, 그 기본적인 연산을 적용할 대상에 따라서 Python객체에 하려면 Python Binder로, 기본적인 .NET 객체에는 Object Binder로, C#은 C#런타임 바인더로 적용하게 됩니다. 그 기본적인 연산의 목록은 현재 아래와 같습니다.

----- 리스트 2 -----

namespace System.Dynamic
{
    public class DynamicObject : IDynamicMetaObjectProvider
    {
        protected DynamicObject();

        public virtual IEnumerable<string> GetDynamicMemberNames();

        public virtual DynamicMetaObject GetMetaObject(Expression parameter);

        public virtual bool TryBinaryOperation(BinaryOperationBinder binder, object arg, out object result);

        public virtual bool TryConvert(ConvertBinder binder, out object result);

        public virtual bool TryCreateInstance(CreateInstanceBinder binder, object[] args, out object result);

        public virtual bool TryDeleteIndex(DeleteIndexBinder binder, object[] indexes);

        public virtual bool TryDeleteMember(DeleteMemberBinder binder);

        public virtual bool TryGetIndex(GetIndexBinder binder, object[] indexes, out object result);

        public virtual bool TryGetMember(GetMemberBinder binder, out object result);

        public virtual bool TryInvoke(InvokeBinder binder, object[] args, out object result);

        public virtual bool TryInvokeMember(InvokeMemberBinder binder, object[] args, out object result);

        public virtual bool TrySetIndex(SetIndexBinder binder, object[] indexes, object value);

        public virtual bool TrySetMember(SetMemberBinder binder, object value);

        public virtual bool TryUnaryOperation(UnaryOperationBinder binder, out object result);
    }
}


위의 목록에서 보시면 TryInvokeMember메서드가 있고 인자로는 InvokeMemberBinder를 받는게 보이시져? 그리고 위의 리플렉터에서 뽑은 리스트1을 보시면, Create메서드의 인자로 CSharpInvokeMemberBinder를 생성하고 있습니다. 그리고 CSharpInvokeMemberBinder를 따라가보면, base클래스가 InvokeMemberBinder가 나옵니다. 즉, DLR이 이해할 수 있는 기본연산이 C# 바인더를 통해서 실행되고 있을음 유추해볼 수 있습니다.

그리고 리스트1에서 "<>p_Site1" 이라는 걸 따라가보면 선언이 아래와 같습니다.

public static CallSite<Func<CallSite, object, object>> <>p__Site1;

즉, static 필드인데요. 델리게이트도 담고 있습니다. 이게 Foo메서드 호출에 대한 dynamic call site를 가지고 있는 필드입니다. 위의 리스트1의 코드를 보시면, 이 <>p_Site1에 저장된 내용을 Target메서드를 통해서 호출하고 있는 모습을 보실 수 있습니다. 생긴게 좀 복잡하긴 한데요, 이걸 뭐 직접 짜야하는건 아니고 컴파일러가 작업해주는 거니까요. 이 이야기는 나중에 더 자세하게 다루도록 하구요. 일단 dynamic이 어디에 어떤 모습으로 쓰일 수 있고, 그게 뭘 의미하는지 더 알아보도록 하겠습니다. 우선, 아래의 코드를 보시져. 

dynamic d = ...;

d.Foo(1, 2, 3); // (1)

d.Prop = 10; // (2)

var x = d + 10; // (3)

int y = d; // (4)

string y = (string)d; // (5)

Console.WriteLine(d); // (6)
(d.Foo(); 에서 d는 Foo의 실행요청을 받는 receiver이고, d의 타입이 dynamic이라면 d는 dynamic receiver가 되는거임!)

1. Foo메서드의 호출요청을 받은 객체의 타입이 dynamic이므로 컴파일러는 런타임에게 이 코드에서 d의 실제 runtime type이 뭐든지에 상관없이 "Foo"라는 메서드를 매개변수{1, 2, 3}를 적용해서 바인드해야 한다는걸 알려줍니다.

2. 역시 1번과 마찬가지로 dynamic receiver가 있으므로 컴파일러는 런타임에게 이 코드에서는 "Prop"이라는 프로퍼티비스무리한(필드나 프로퍼티)걸 바인드해야 하고 거기에 10이라는 값을 할당해야 한다고 알려줍니다.

3. 여기서는 +연산자는 동적으로 바인드되는 연산인데요, 매개변수중에 하나가 dynamic이기 때문이죠. 런타임은 실제 d의 runtime type에 대해서 일반적인 연산자 오버로딩 규칙을 따라서 적합한 연산을 찾습니다.

4. 여기서는 암시적인 형변환이 있는데요, 컴파일러는 int와 d의 runtime type에 대한 모든 형변환을 고려해본뒤에 d에서 int로의 형변환이 가능한지 판단하도록 런타임에게 알려줍니다.

5. 이번에는 명시적인 형변환 인데요, 컴파일러는 이 변환을 컴파일하고 런타임에게 이 형변환에대해서 검토해보도록 알려줍니다.

6. 비록 컴파일타임에서 볼 수 있는 메서드를 호출하지만, 인자가 dynamic이므로 컴파일타임에서는 오버로딩 판별을 할 수 없습니다. 그래서 어떤 Console.WriteLine을 호출할지도 역시 런타임에 결정하게 됩니다.


- 마치면서

오늘은 dynamic타입에 대해서 이야기 해봤습니다. 재주가 부족해서 잘 설명한거 같지 않네요;;; 생각보다 dynamic배후의 이야기가 많은데요, 다음시간부터 거기에 대해서 하나씩 하나씩 이야기 해보겠습니다~.


- 참고자료

1. http://blogs.msdn.com/samng/archive/2008/10/29/dynamic-in-c.aspx
2. http://blogs.msdn.com/cburrows/archive/2008/10/27/c-dynamic.aspx
3. http://channel9.msdn.com/pdc2008/TL10/

Welcome to Dynamic C#(4) - 극과극 비교체험.

C# 2009. 8. 20. 20:25 Posted by 알 수 없는 사용자

- 또 쓸데없는 생각 하냐?

안녕하세요. 정말 오랜만입니다. 사연이 많은 사람이다 보니, 잠수를 자주 타게 되네열. -_-;;;;; 그래서 뭐라도 써야한다는 생각을 하다가, 별로 쓸모있을진 모르겠지만, 실행속도를 비교해보자는 생각이 들었습니다. 짧은 글이 되겠지만, 조금이라도 도움이 되길바라면숴!


- 빨랑 비교한거 내놔.

비교대상은 한 클래스에 있는 메서드를 그냥 호출하는 것과 dynamic을 통해 호출하는 것, 그리고 리플렉션을 통해서 호출하는 세가지방법입니다. 그리고 각 호출을 메서드를 10만, 50만, 100만, 300만, 500만번 호출하는 것으로 속도를 재어봤습니다. 실행의 대상이 된 코드는 아래와 같습니다.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Reflection;

namespace ConsoleApplication2
{
    class Test
    {
        public int FivePlusFive()
        {
            return 10;
        }
    }

    class Program
    {
        public void ReflectionCall()
        {
            object test = new Test();
            Type type = test.GetType();
            type.InvokeMember("FivePlusFive", System.Reflection.BindingFlags.InvokeMethod, (Binder)null,
                test, new object[] {});
        }

        public void DynamicCall()
        {
            dynamic test = new Test();
            test.FivePlusFive();
        }

        public void NormalCall()
        {
            Test test = new Test();
            test.FivePlusFive();
        }

        static void Main(string[] args)
        {
            Program prog = new Program();

            //for JIT compile
            prog.ReflectionCall();
            prog.DynamicCall();
            prog.NormalCall();

            long limit = 5000000;

            DateTime normalStart = DateTime.Now;
            for (int i = 0; i < limit; i++)
            {
                prog.NormalCall();
            }
            DateTime normalEnd = DateTime.Now;
            TimeSpan normalResult = normalEnd - normalStart;

            DateTime dynamicStart = DateTime.Now;
            for (int i = 0; i < limit; i++)
            {
                prog.DynamicCall();
            }
            DateTime dynamicEnd = DateTime.Now;
            TimeSpan dynamicResult = dynamicEnd - dynamicStart;

            DateTime reflectionStart = DateTime.Now;
            for (int i = 0; i < limit; i++)
            {
                prog.ReflectionCall();
            }
            DateTime reflectionEnd = DateTime.Now;
            TimeSpan reflectionResult = reflectionEnd - reflectionStart;

            Console.WriteLine("Normal Time : {0}", normalResult);
            Console.WriteLine("Dynamic Time : {0}", dynamicResult);
            Console.WriteLine("Reflection Time : {0}", reflectionResult);
        }
    }
}



JIT컴파일에 걸리는 시간을 빼기 위해서 일단 한번씩 먼저 실행했구요, 각각의 방법을 정해진 횟수만큼 실행해서 시간을 측정하는 방식으로 했습니다. 그럼 결과를 보시져!!!! 야호!!!! 완전 신나!!!! -_-......

- 10만번

- 50만번

- 100만번

- 300만번

- 500만번


그리고 위의 결과를 표로 종합해보면 아래와 같습니다.


일반 호출은 리플렉션에 비해서 너무 작아서 그런지 아예 나타나지도 않는군요-_-;;;; 별로의미있는 코드로 실험을 한건 아니지만, 다이나믹이 리플렉션에 비해서는 월등히 빠르군요. 아마도 DLR의 힘을 빌려서 리플렉션 보다 훨씬 빠른 방식을 이용하는 것 같습니다. 이 부분에 대해서는 좀 조사를 해봐야 할거 같네요.


- 피드백 및 정정사항!!ㅋ

이 글을 보시고 정성태님께서 피드백을 주셨습니다.(http://www.sysnet.pe.kr/Default.aspx?mode=2&sub=0&detail=1&pageno=0&wid=766&rssMode=1&wtype=0) 정성태님의 블로그를 들르면서 내공의 깊이에 감탄을 하곤했는데, 직접 피드백을 받으니 더 확실하네 느껴지네요^^ㅋ. 글의 내용을 보시면, 제가 단순히 리플렉션 호출을 반복하게 설정해놓은 것에서 리플렉션에 매우 불리한 결과가 도출되는 요인이 있음을 지적하시고, 더 빠르게 그리고 오히려 다이나믹 보다도 더 빠른 결과가 나올 수 있는 방식을 제시해주고 계십니다.

잘 몰랐던 부분에 대해서 지적해주셔서 좋은거 배웠네요~.


- 마치면서

별로 내용도 없는 글을 썼군요-_-;;; 다음 포스트부터는 dynamic에 대해서 좀 더 심도 깊게 파보려고 생각중입니다. 좋은글이 많은데 잠수타고 정신줄 놓느라고 못보고 있었더군요!! 암튼. 곧 돌아오겠슴돠. ㅋㅋㅋ

Welcome to Dynamic C#(3) - 마음이 넒어진 C#

C# 2009. 6. 26. 08:58 Posted by 알 수 없는 사용자
- 대인배 모드

C#은 점점 더 마음이 넓어지고 있습니다. F#이라는 조금은 독특하지만 머리좋은 친구가 좋은 기능을 소개해주기도 하구요(C# 2.0의 Generics는 F#의 배후에 있는 Don Syme이 제안한거라는 군요), 팬들이 많아지면서 점점 더 넓은 마음을 갖추게 되었습니다. 그리고 대인배 모드에 또 중요한 역할을 해주는게 있는데요 Co- Contravariance입니다.

우선 그다지 친근하지 않은 이름이네요. 이건 대체 뭘까요? 일단 정리해서 말씀드리면, C# 3.0에서 불필요하게 캐스팅을 하면서 해야 했던 작업을 매우 편하게 할 수 있도록 도와주는 C# 4.0의 새로운 기능입니다. C# 3.0에서 못하게 막았던 부분중에서 문제를 일으킬 가능성이 없는 부분에 대해서는 편리하게 사용할 수 있도록 지원해준다는 말인데요. 뭔가 딱 듣기만 해도 대인배스러운 느낌이 들지 않나요 ㅋ. 무슨 이야기 인지 예제를 보면서 확인해보겠습니다. Eric Lippert의 기가막힌 글이 있는데요, 그 글을 참고로 하면서 작성한 글입니다.(링크는 아래 참고자료쪽에!) 


- 예제를 내놓지 않으면 구워먹겠다.

일단, 동물들에게 먹이를 주는 메서드를 통해 알아보도록 하지요. 아래와 같은 코드를 작성합니다.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Co_ContraVariance
{
    class Animal
    {
        public bool Hungry { get; set; }

        public override string ToString()
        {
            return "Animal";
        }
    }

    class Mammal : Animal
    {
        public override string ToString()
        {
            return "Mammal";
        }
    }

    class Giraffe : Mammal
    {
        public override string ToString()
        {
            return "Giraffe";
        }
    }

    class Tiger : Mammal
    {
        public override string ToString()
        {
            return "Tiger";
        }
    }

    class Program
    {
        void FeedAnimals(IEnumerable<Animal> animals)
        {
            foreach (Animal animal in animals)
            {
                if (animal.Hungry)
                {
                    Feed(animal);
                }
            }
        }

        private void Feed(Animal animal)
        {
            Console.WriteLine(animal.ToString());
        }

        static void Main(string[] args)
        {
            List<Giraffe> giraffes = new List<Giraffe>{
                new Giraffe{ Hungry = true},
                new Giraffe{Hungry = true},
                new Giraffe{Hungry = false}
            };

            Program program = new Program();
            program.FeedAnimals(giraffes);
        }
    }
}



딱히 잘못된 부분이 보이지 않는 코드입니다. 하지만, vs2008에서는 아래와 같은 에러가 납니다.

 


즉, 다른 타입이므로 메서드를 오버로드하라는 이야기지요. Giraffe는 Animal의 서브타입이므로 문제가 없습니다만, IEnumerable<Giraffe>는 IEnumerable<Animal>과 담고있는 요소의 타입이 다를뿐 어떤 관계도 없습니다. 그래서 IEnumerable<Giraffe>에서 IEnumerable<Animal>로는 형변환이 안되는 것이죠. 그래서 아래와 같은 코드를 통해 간접적으로 형변환을 해줘야 합니다.

program.FeedAnimals(giraffes.Cast<Animal>()); 


 
그런데, 안전한 경우에 한해서 이런게 잘 되게 해주겠다는 게 C#4.0의 이야기입니다. 일단 실행결과를 보시죠.

 

 

C#4.0으로 짠 코드는 잘 실행되는게 보이시죠? 그렇습니다. Covariance를 통해서 코드가 잘 실행된 것입니다. 그러면 이런 Covariance와 Contravariance에 대해서 좀 더 알아보죠.

일단, 간략하게 정의를 한번 내려보도록 하겠습니다.

우선 어떤 타입 T와 U가 있다고 했을때, 다음중 하나는 참이 됩니다.

1. T는 U보다 크다
2. T는 U보다 작다
3. T와 U는 같다
4. T와 U는 서로 관련이 없다.

위의 코드에서 보듯이, Giraffe는 Mammal의 서브타입이므로 Mammal보다 작습니다. 하지만, Giraffe는 Tiger와는 아무관련이 없는 타입이죠. 이런 타입간의 관계에서 어떤 연산을 T와 U에 대해서 수행했을때, 그 결과로 나온 T'와 U'가 T와 U의 관계를 그대로 유지한다면, 그연산은 covariant하다고 이야기 할 수 있으며, 대입의 방향성과 크고작음을 뒤집고 같음과 관계없음만 그대로 유지한다면(위 리스트에서 1,2번을 뒤집고 3,4번만 유지한다면) 이 연산은 contravariant하다고 이야기 할 수 있습니다.


잘 이해가 되시나요? 무슨 꼭 수학의 증명같은 냄새가 나서 거부반응이 일어나신 분들도 있을거 같군요. 그럼, 예제를 통해 차근차근 설명드리도록 하겠습니다.

 

 public interface IEnumerable<T> : IEnumerable
    {
        // 요약:
        //     Returns an enumerator that iterates through the collection.
        //
        // 반환 값:
        //     A System.Collections.Generic.IEnumerator<T> that can be used to iterate through
        //     the collection.
        IEnumerator<T> GetEnumerator();
    }

위 코드는 C#3.0의 IEnumerable의 정의인데요. 이 인터페이스에서 형식매개변수인 T는 GetEnumerator를 통해서 리턴될때만(output position에서만) 사용되는 걸 볼 수 있습니다. 즉, T의 요소를 편집할 방법이 없다는 이야기지요. 이런 경우는 형식매개변수의 대입의 방향성을 유지한 상태에서 IEnumerable<Giraffe>에서 IEnumerable<Animal>같은 형변환을 가능하게 해주겠다는 이야기 입니다.

 

- 대입의 방향성

Giraffe는 Animal의 서브타입입니다. 그렇다면 아래와 같은 코드가 가능하죠.

Animal animal = new Giraffe;

즉, Animal이 Giraffe보다 더 큰(상위) 타입이기 때문에 가능하죠. 하지만 아래의 코드는 컴파일되지 않습니다.

Giraffe giraffe = new Animal();

아래와 같이 하면 컴파일은 문제가 없습니다.

Giraffe giraffe = (Giraffe)new Animal();

하지만, 런타임에서 형변환이 불가능하다고 하면서 예외가 발생되죠. 즉, Animal이 더 크기 때문에, Giraffe는 Animal에 대입될 수 있지만, Animal은 Giraffe에 대입될 수 없습니다. 이게 크고작음에 관련된 대입의 방향성입니다.

단, Giraffe와 Tiger는 둘다 Mammal의 서브타입이지만, 둘사이에는 아무관련이 없습니다.



즉, 이야기를 이어 가자면 Giraffe가 Animal에 대입가능하기 때문에, 형식매개변수가 리턴될때만(output position에서) 사용된다면, 대입의 방향성을 유지한상태에서는 IEnumerable<Giraffe>에서 IEnumerable<Animal>로 변환을 하는것 같이 참조형변환을 지원해주겠다는 이야기 입니다.

 
반대로, Contravariance는 파라미터로 받기만하는 경우에만 사용할 수 있습니다. 그리고 대입의 방향성 역시 반대로 뒤집어 버립니다.

 public interface IComparer<T>
    {
        // 요약:
        //     Compares two objects and returns a value indicating whether one is less than,
        //     equal to, or greater than the other.
        //
        // 매개 변수:
        //   x:
        //     The first object to compare.
        //
        //   y:
        //     The second object to compare.
        //
        // 반환 값:
        //     Value Condition Less than zero x is less than y.  Zero x equals y.  Greater
        //     than zero x is greater than y.
        int Compare(T x, T y);
    }


위 코드는 특정타입에 대해서 비교를 지원해주고 싶을때 구현하는 인터페이스인데요, 여기도 역시 보시면, 형식매개변수인 T는 Compare메서드에서 비교할 인자를 받는 곳(input position)에서만 사용되는 걸 볼 수 있습니다. 예제를 위한 예제가 될 수 도 있지만, IComparer<T>를 통해서 contravariance를 설명해보죠~. 

위에서 작성한 코드에 아래와 같은 코드를 추가합니다. 

    class AnimalComparer : IComparer<Animal>
    {
        public int Compare(Animal x, Animal y)
        {
            return 1; //예제를 위해 ㅋ.
        }
    }

    class GiraffeComparer : IComparer<Giraffe>
    {
        public int Compare(Giraffe x, Giraffe y)
        {
            return 1; //예제를 위해 ㅋ.
        }
    }

.......중략.......

        static void Main(string[] args)
        {
            ........중략.......

            IComparer<Animal> animalComp = new AnimalComparer();
            IComparer<Giraffe> giraffeComp = animalComp;
            Console.WriteLine(giraffeComp.Compare(new Giraffe(), new Giraffe()));
        }



각각 IComparer<Animal>과 IComparer<Giraffe>를 구현한 비교 클래스입니다. 그리고 IComparer<Animal>을 IComparer<Giraffe>에 대입하고 있습니다. 그리고 아무문제없이 컴파일 됩니다. 그리고 실행도 문제없이 됩니다.



Animal은 Giraffe보다 더 큰 데 어떻게 IComparer<Giraffe>에 들어가는 걸까요? 그냥 상식적으로 생각했을때 동물을 비교할 수 있다면, 기린(giraffe)을 비교할 수도 있겠죠? 사람들이 IComparer<Giraffe>에 비교하려고 넣는 객체는 모두 Giraffe타입이겠고 giraffeComp가 실제로 호출하게 되는 Compare메서드는 IComparer<Animal>을 구현한 animalComp의 메서드겠죠. 그래서 방향성이 뒤집혔지만, contravariance로 인해서 실행가능한 코드가 됩니다.

반대로 IComparer<Animal>에다가 IComparer<Giraffe>를 대입하는 경우를 생각해보죠. 그렇다면 사람들은 animalComp를 통해서 Animal을 비교하고 싶어할텐데, 실제로 호출될 메서드는 IComparer<Giraffe>의 Compare메서드겠죠. 그 메서드는 Giraffe타입을 받을 수 있으므로 Animal을 받을 수 없습니다. 그래서 이런 참조형변환은 지원되지 않습니다.

즉, contravariance는 형식인자가 파라미터로 입력되는 부분에서만(input position에서만) 쓰일때, 대입의 방향성을 뒤집는 참조형변환을 지원해주겠다는 이야기 입니다. 일단은 여기까지가 co- contravariance에 대한 간략한 설명입니다. 


- 대인배 만쉐이 ㅋ

암튼, 점점 더 대인배가 되어가는 C#의 모습을 살짝 엿보았습니다. 어떻게 보면, 그냥 직관적으로 할 수 있는 부분들에 대해서 제약을 풀어준 셈이니까 대인배전략에 걸맞는 기능인 거 같습니다. 물론 마냥 낙관적인 것만은 아닙니다만. 성격좋은 사람도 나름의 규칙은 있는 법이니까요. 안전하고 적절할 co- contravariance의 사용은 "들어가는 거(형식매개변수)는 contravariant일 수 있고, 나가는 거(return되는)는 covariant일 수 있다."라는 군요. 그렇지 않은 경우도 있다는 말이겠죠. 제 내공이 허락한다면 이부분에 대해서도 정리해서 올리도록 하겠습니다. 대인배 C# 만쉐이 캬캬캬.

 

- 참고자료

1. http://blogs.msdn.com/ericlippert/archive/2007/10/16/covariance-and-contravariance-in-c-part-one.aspx
2. http://blogs.msdn.com/ericlippert/archive/2007/10/17/covariance-and-contravariance-in-c-part-two-array-covariance.aspx
3. http://blogs.msdn.com/ericlippert/archive/2007/10/19/covariance-and-contravariance-in-c-part-three-member-group-conversion-variance.aspx
4. http://blogs.msdn.com/ericlippert/archive/2007/10/22/covariance-and-contravariance-in-c-part-four-real-delegate-variance.aspx
5. http://blogs.msdn.com/ericlippert/archive/2007/10/26/covariance-and-contravariance-in-c-part-five-interface-variance.aspx
6. New features in C# 4.0, Mads Torgersen

Welcome to Dynamic C#(2) - Wanna be a polyglot.

C# 2009. 5. 17. 16:25 Posted by 알 수 없는 사용자

- 자넨 왜 그렇게 언어에 집착하는고?

넵, 확실히 저는 언어에 쫌 집착하는 편이긴 합니다. 우리가 말하고 쓰는언어도 꽤나 집착하는 편입니다. 언어를 제대로 배우려고 노력하다보면, 더 재밌는 걸 많이 접할 수 있게 되고 그 언어뿐만 아니라 언어를 쓰는 사람들의 사고방식도 아주 조금씩 이해하게 되기 때문이죠. 뭔가 보고싶은게 있는데 그게 제가 모르는 언어로 되어 있어서 못보는건 조금 슬픈일인거 같습니다. 개인적으로 부족한 실력이지만, 미드&일드를 아주 재밌게 즐기고 있습니다.

프로그래밍 언어도 비슷한 의미에서 집착하게 되는게 아닐까 싶습니다. 프로그래밍 언어에는 그 언어를 만들고 지지하는 사람들의 사고방식도 같이 배울 수 있게 되고, 점점 재밌게 할수 있는게 늘어나기 때문이죠. 최근에 언어에 대해서 아주 부족한 의견이지만 글을 썼던 적이 있습니다. 관심있으신 분은 보시고 따쓰한 피드백 주시면 완전 감사하겠습니다. 

아무튼 그런의미에서 F#에 C#에 Axum까지 건드려보고 있는거지요. 줏대가 없다거나 바람기가 있다거나 뭐 그런건 아닙니다. 그럼 본론으로 들어가서, 지난번엔 동적C#에 대한 이야기를 조금 드렸었습니다. 하지만 정작 알고 싶은건 dynamic키워드란게 생겼고 대충 오리꽥꽥 어쩌구 저쩌구 하는건 알겠는데, 어디다 써먹는거란 말이더냐? 뭐 그런거겠죠. 그래서 쌩초보이지만, 최대한 그런관점에서 접근해보고자 합니다. 그 첫번째가 실제로 프로젝트를 하다가 하나 느낀게 있어서 그걸 적어보고자 합니다. 



- 시나리오
(제가 모르는 해결방법이 있을수도 있습니다. 그럴땐 따쓰한 피드백을!)

LINQ to SQL(이하 L2S)로 프로젝트를 진행중입니다만, 데이터가 추가되거나, 수정되거나 삭제될때 그 값들의 이전/이후 데이터를 포함해서 그 데이터의 고유번호(seq)를 같이 저장하는 뭐 그런 시나리오입니다. 그래서 L2S에서는 아래와 같은 방법을 제공합니다.

 

ChangeSet changeSet = db.GetChangeSet();

foreach (Customer c in changeSet.Inserts)
{
	.......
}

 

하지만, 위와 같은 코드는 한번의 SubmitChanges로 변경이 일어나는 대상 테이블이 하나라면 Generic파라미터로 처리할 수도 있겠지만(ChangeSet에서 리턴되는 객체의 타입이 object입니다), 주문과 상세주문같이 한번에 여러개의 테이블에 변경이 일어난다면, 그닥 친절하지 못한 시나리오가 되겠습니다. 그래서 그때 들었던 생각이 "아 이거 dynamic키워드를 이용해서 오리꽥꽥타이핑(duck typing)을 이용하면, 쫌 쉽게 될거 같은뎅..." 였습니다. 그래서 한번 살짝 구현해봤습니다.

 

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Reflection;

namespace FirstDynamic
{
    class Customer
    {
        public int Seq{get; set;}
        public string Name {get; set;}        
    }

    class Company
    {
        public int Seq{get; set;}
        public string Name{get; set;}
    }

    class Project
    {
        public int Seq{get; set;}
        public string Name{get; set;}
    }

    class NoneSeqThing
    {
        public string Name{get; set;}
    }

    class Logger
    {
        public void WriteLog(dynamic entity)
        {
            try{
                Console.WriteLine(entity.Seq);
            }
            catch(Microsoft.CSharp.RuntimeBinder.RuntimeBinderException ex)
            {
                Console.WriteLine("Exception : " + ex.Message);
            }
        }
    }

    class Program
    {
        static void Main(string[] args)
        {            
            Logger logger = new Logger();

            Customer customer = new Customer
            {
                Seq = 1,
                Name = "Boram"
            };

            Company company = new Company
            {
                Seq = 6,
                Name = "NanoSoft"
            };

            Project project = new Project
            {
                Seq = 108,
                Name = ".NET 99.9"
            };

            NoneSeqThing noneSeqThing = new NoneSeqThing
            {
                Name = "None Seq Thing"
            };

            object[] entities = new object[] { customer, company, project, noneSeqThing };

            foreach (object entity in entities)
            {
                logger.WriteLog(entity);
            }
        }
    }
}

 

위에서는 몇가지 객체를 선언해서 DTO를 흉내냈고, Seq가 있는 타입과 없는 타입이 있는 것을 볼 수 있습니다. 그리고 ChangeSet에서 반환되는 객체를 그냥 dynamic으로 Logger에게 넘겨주고 있습니다. 그리고 Seq멤버변수가 있으면 남기고 없으면 안남기는 식으로 다른 처리를 해주고 있습니다. 그리고 결과는 아래와 같습니다.



그렇습니다, 이런식으로 dynamic을 이용한다면 지난 포스트에서 Paul Graham아자씨가 이야기 했던 나이들고 엄한 이모 컴파일러와 좀더 편하게 대화할 수 있는 법이죠. 써놓고 보니깐 포스트가 별거 없네요. 기분 탓이 아니라 제 내공 탓이겠죠. 여담이지만, 제가 해결한 방식은 리플렉션으로 Seq프로퍼티를 검색해서 유/무를 판별하는 방식을 이용했습니다. 확실히 손이 좀더 많이 가는 방법이죠.

이렇게 여러가지 패러다임에 익숙해지고 잘 활용할 수 있게 되면, 점점 더 빠르고 경쾌한 리듬으로 코드를 작성하는 일도 가능하지 않을까 생각해봅니다. 이제 프로그래밍을 하시는 분들도 세계화에 발맞추는 속도에 걸맞게 프로그래밍언어에 대해서도  ployglot이 되어야 하지 않을까 생각합니다. 다만, 제 생각엔 그러한 노력은 프로그래머에게 족쇄를 채우는게 아니라 오히려 더 큰 자유를 주는 일이라고 생각합니다. 그럼, 또 개발하다가 dynamic의 헬프가 필요한 순간이 오면 나누도록 하겠습니다.

여담이지만, polyglot하니깐 중학교때 "핸들 이빠이 돌려"라는 한문장으로 3개국어를 자유자재로 구사하시던 한문선생님이 떠오르는 군요. ㅋ


-참고자료
1. Pro LINQ: Language Integrated Query in C# 2008, Joseph C. Rattz, Jr. , APRESS.

Welcome to Dynamic C#(1) - 첫만남.

C# 2009. 5. 4. 14:37 Posted by 알 수 없는 사용자

-너 F#쓰던 넘이자나, Dynamic C#은 뭐냐.

안녕하세요. Welcome to F#이라는 앞뒤도 안맞고 내용도 부실하며, 불친절한 포스트를 남발하고 있는 강보람(워너비)입니다. 원래 하던거에 약간 시들해지면, 새로운 자극을 찾는다고 하던가요. F#의 포스트를 쓰는게 점점 벽에 부딛히니 C#과 자극적인 외도를..... 생각하는건 아닙니다. 하지만, 의문이 생기니 그걸 찾아보고자 하는 호기심이 생기고, 그 호기심을 오래잠재워두면 없어질거 같아서 일단 시리즈를 시작해보자! 해서 일단 무작정 Welcome to Dynamic C#이라는 시리즈를 시작해볼까 합니다. 기존에 동적언어에 대한 경험이 일천하다보니 이 시리즈의 내용역시 상당히 불친절할걸로 예상되지만, 관심있으신 분들께선 따쓰한 피드백을 주시기 바랍니다. 이제 날씨가 더워지는데 따쓰한 피드백을 주면 제가 열사병으로 죽지는 않을까 하는 염려는 고이접어 간직하시고 따쓰한 피드백을....-_-


-Paul Graham아저씨와 실용주의 아저씨들?

Paul Graham을 아십니까? "Hackers and Painters"의 저자이며, 논쟁을 불러일으킬만한 말을 참 많이도 하는 Lisp빠돌이죠. 오랜만에 Hackers and Painter를 읽다가 아래와 같은 구절을 읽고는 '이 책에 이런구절이 있었나~?' 하면서 C# 4.0의 dynamic과 DLR이 떠올랐습니다. 

A programming language is for thinking of programs, not for expressing programs you've already thought of. It should be a pencil, not a pen. Static typing would be a fine idea if people actually did write programs the way they taught me to in college. But that's not how any of the hackers I know write programs. We need a language that lets us scribble and smudge and smear, not a language where you have to sit with a teacup of types balanced on your knee and make polite conversation with a strict old aunt of a complier. 

프로그래밍언어는 프로그램에 대해서 생각해나가기 위한 것이지, 이미 머리속에 짜여져있는 프로그램을 표현하기 위한 것이 아닙니다. 프로그래밍언어는 펜이 아니라 연필이어야 합니다. 정적타입은 제가 학교에서 배우던 것 처럼만 프로그램을 짠다면 괜찮은 아이이디어 일지도 모르겠습니다. 하지만 제가 아는 해커들중에 그렇게 짜는 사람은 한명도 없더군요. 우리는 명확하지 않은 아이디어를 흐릿한 형태 그대로 빠르게 묘사할 수 있게 해주는 언어가 필요합니다. 무릎에 타입이라는 찻잔을 떨어지지 않게 올려놓고, 나이많고 엄격하신 이모님이랑 공손하게 대화하려고 애쓰는 것 처럼 컴파일러와 대화할 필요가 없다는 거죠.


그리고는 예전에 사두었던 "Programming Ruby"를 꺼내서 읽어봤습니다. "실용주의 프로그래머"를 읽으면서 실용주의 학파로 유명한 데이비드 토머스와 앤디 헌트가  펄에서 루비로 관심사를 옮겼다는 사실은 알고 있었지만, 이 책을 읽으면서 이들의 동적언어에 대한 사랑이 확실하게 드러나더군요.

반면에 루비를 잠깐이라도 사용해본다면, 동적 타입을 갖는 변수가 많은 점에서 실질적으로 생산성을 향상시킴을 알게 될 것이다. 오랜 기간 실행되는 커다란 루비 프로그램이 중요한 작업을 수행하면서도, 타입과 관련된 오류는 하나도 던지지 않고 잘 돌아간다. 왜 일까? ..... 결론적으로 말해 '타입 안전성'에서 말하는 '안전성'이란 대개 허상에 불과하며, 루비 같은 동적 언어로 개발하는 것은 안전하면서도 생산적이다.

이런 호기심이 생기자, F#때문에 미뤄오던 C#4.0의 dynamic에 대한 탐구를 더 이상 미룰 수 없다는 생각이 들었습니다. 그래서 가끔 생각날때 마다 dynamic에 대한 생각을 정리해서 올리려고 지금 포석을 깔고자 하는 것이죠. 대뜸 F#에 대해서 쓰다가 C#으로 옮겨가면, 읽으시는 분들도 혼란을 느끼시지 않을까 해서 말이죠. 물론 그런분덜 한분도 없을거 압니다-_-. 


-반갑다! dynamic! 

일단, dynamic에 대해서 조금 알아보도록 하겠습니다. dynamic은 말 그대로 동적이라는 거구요, 타입체크를 컴파일 타임이 아니라 수행순간에 즉, 런타임에서 하겠다는 말이 됩니다. 여기서 Duck typing이라는 개념이 들어가게 되는데요, Duck typing은 객체의 타입에 따라서 가능여부를 결정하는 게 아니라, 그저 요건을 갖추고 있다면 모두다 가능하다고 보는 거죠. 즉, 비유를 하나 하자면 조선시대의 어떤 모임을 생각해 보겠습니다.

이 모임에서 양반집의 지체높은 어르신들과 그 어르신들의 자제들만 회원으로 받아준다면 이 모임은 정적타입검사(Static type check)를 하고 있는셈입니다. 특정 계급(Type)만 들여보내주기 때문이죠. 타입이 틀리면 아예들어갈 수가 없습니다. 하지만, 어떤 모임에서는 그림에 관심이 있는 사람이라면, 양반이나 상놈 가리지 않고 모두다 받아들여줬습니다. 이 모임은 바로 Duck typing을 충실히 따르고 있는셈입니다. 계급(타입)에 상관없이 그저 공통점(그림을 사랑하는 뜨거운 가슴!)만 있으면 들여보내주기 때문이죠. Duck typing은 이처럼 타입으로 가르지 않고, 요건을 갖췄다면 모두 묻지도 따지지도 않고 받아들여주는 걸 이야기 합니다.(Duck이 들어가 있는 이유는 애초에 이 개념을 설명하신 분께서 오리처럼 걷고 꽥거리면 전부다 오리로 봐주자고 말씀하셨기 때문이죠. 제가 안그랬습니다-_-. 오히려 제가 만들었다면, '동호회 타이핑' 같은용어를 썼을거 같은데... 제가 안만든게 다행이군요.) 

그럼 첫 예제를 한번 볼까요? 

static void Main(string[] args)
{
            dynamic num = 4;

            Console.WriteLine(num);
 

            Type type = num.GetType();
            MethodInfo method = type.GetMethod("ToString", new Type[] {});

            if (method != null)
            {
                Console.WriteLine(method.ToString());
            }
} 

위 예제는 dynamic타입의 num에 숫자인 4를 입력하고, 출력을 합니다. 그리고 WriteLine에 의해서 불려지는 ToString메서드의 유무를 검사하기 위해서, 타입에서 ToString메서드를 찾아서 출력하는 프로그램입니다. 결과는 아래와 같습니다. 



WriteLine에선 출력할 객체의 ToString을 호출하죠. 그래서 num의 값이 출력되는 것을 보면 런타임에 num이 ToString을 가지고 있는지 확인해서 있으니까 출력을 했다고 볼 수 있습니다. 그리고 확인을 위해서 dynamic타입인 num의 타입에서 ToString메서드를 찾아서 해당 메서드를 출력해봅니다. 결과를 보면 ToString이 있는 것을 볼 수 있습니다. 그리고 WriteLine의 오버로딩중에서 dynamic타입을 인자로 받아들이는 오버로딩이 없는걸로 봐서는, 런타임에 해당 dynamic객체가 ToString을 가지고 있는지 봐서 있으면 출력하고, 없으면 Microsoft.CSharp.RuntimeBinder.RuntimeBinderException을 발생시키는 것을 유추할 수 있습니다.


-양반과 상놈의 이야기 

그럼 위에서 이야기 했던, 양반과 상놈의 이야기를 한번 구현해볼까요? 

class Yangban
    {
        public string Name {get; set;}

        public void YangbanSound()
        {
            Console.WriteLine("Yo, it's the yangban sound, baby :) ");
        }
    }

    class YangbanChild : Yangban
    {
        public void ILikeDrawing()
        {
            Console.WriteLine("I like Drawing");
        }
    }

    class Sangnom
    {
        public string Name { get; set; }

        public void SangnomSound()
        {
            Console.WriteLine("Yo, it's the sangnom sound, baby ;) ");
        }

        public void ILikeDrawing()
        {
            Console.WriteLine("I like Drawing");
        }
    }

    class Program
    {
        public void EnteringYangbanClub(Yangban yangban)
        {
            Console.WriteLine("Welcome yangban {0}!", yangban.Name);
        }

        public void EnteringDrawingClub(dynamic person)
        {
            try
            {
                person.ILikeDrawing();
                Console.WriteLine("Welcome {0}! who like drawing",person.Name);
            }
            catch (Microsoft.CSharp.RuntimeBinder.RuntimeBinderException you_do_not_like_drawing)
            {
                Console.WriteLine("{0}. You can't come in. I'm sorry about that :)", person.Name);
            }
        }

        static void Main(string[] args)
        {
            Yangban yangban1 = new Yangban { Name = "chulsoo" };
            YangbanChild yangbanChild1 = new YangbanChild { Name = "chulsooAdeul" };
            Sangnom sangnom1 = new Sangnom { Name = "boram" };

            Program program = new Program();
            program.EnteringDrawingClub(yangban1);
            program.EnteringDrawingClub(yangbanChild1);
            program.EnteringDrawingClub(sangnom1);
        }
    }

위 코드를 보시면, 양반과 양반자식, 상놈이 있죠? 모두 이름을 가지고 있구요, 양반은 간지나는 양반사운드를 구사하며, 상놈은 상놈사운드 그리고 양반자식과 상놈은 자기가 그림그리는걸 좋아한다고 합니다. 그리고 두개의 클럽이 있습니다. 하나는 양반만 들어갈 수 있는 클럽이구요, 하나는 그림을 좋아하는 사람이 들어갈 수 있는 클럽입니다. 자 그럼, 양반과 양반자식인 철수와 철수아들, 상놈인 보람을 데리고 이야기를 해보겠습니다. 양반클럽에 철수와 철수아들, 보람 이렇게 셋이 들어가려고 합니다. 그런데, 양반클럽은 양반이거나 양반의 자제가 아니면 못들가게 엄격하게 막아놨습니다. 그래서 일까요? 아래 그림을 보면, 들어가고 싶다는 의사표시조차도 허용되지 않는 슬픈 모습입니다. 

뭐, 계급으로 딱 막혀있기 때문에 들어가는거 자체가 불가능하니까요. 이렇게 타입으로 조건을 걸게되면, 해당타입이거나 해당타입을 상속한 타입이 아니면 안됩니다. 그러면, 그림애호가 클럽에 들어가보도록 하겠습니다. 그림애호가클럽은 일단 다 들여보내주는 군요. 하지만, 들어가게되면 그림을 좋아하는지 크게 외쳐보라고 시킵니다. 근데, 철수는 그림을 좋아하지 않는군요. 그래서 철수는 쫓겨나고 철수아들과 보람은 환영받습니다. 실행결과는 아래와 같죠.


그렇습니다. 계급으로 나누것이 아니라 무엇을 할 수 있는지에 따라 니편 내편을 나누니깐 철수는 못들어가고 보람은 들어가게 되는 것이죠.


-근데 dynamic이거 어따 쓰면 조으까? 

도대체 이걸로 무엇을 할 수 있다는 걸까요? 왜 Paul Graham아저씨는 그토록 다이나믹을 부르짖었으며, 실용주의 아저씨들은 또 왜그랬을까요? 불행히도 저는 그동안 정적인 명령형 언어만 다뤄봤기 때문에 잘 모르겠습니다. 뭐 좀 알아보려고 하는데, 그 과정에서 느끼는 점들을 이곳을 통해 나눠보려고 하는거구요. 그럼 F#뿐만 아니라 C#을 통해서 최대한 자주 찾아뵙겠습니다.


-참고자료

1. Hackers and Painters, Paul Graham, O'Reilly
2. Programming Ruby, 데이비드 토머스, 앤디 헌트, 차드파울러, 인사이트
3. http://code.msdn.microsoft.com/Project/Download/FileDownload.aspx?ProjectName=csharpfuture&DownloadId=3550

[C# 4.0] Generic Covariance And Contra Variance

C# 2009. 4. 13. 20:22 Posted by 알 수 없는 사용자
처음에 이 용어를 보고 정확하게 무슨 뜻인지 잘 몰랐습니다.
그래서 이곳 저곳 검색해 본 결과, 좋은 예제를 하나 소개해 드립니다.
참고 : http://playdotnet.spaces.live.com/blog/cns!7F811570C85CF4EA!4600.entry
public class Employee { }
public class Manager:Employee { }

Employee employee = new Employee();
Manager manager = new Manager();
//Covariance.
Employee manager = new Manager(); 
위 예제의 마지막 코드를 보면 Manager 타입의 객체가 Employee 타입의 Manager 변수로 대입 되었습니다. 생각해 보건대, 매니져도 월급을 받는 직원이므로 당연한 것이지만, 프로그래밍 세계에서는 이것을 Covariance 로 부르더군요. 저도 알게 모르게 이런 코드를 많이 사용했었습니다.

그럼 이건 어떤가요?
public void GetSalary(Employee employee) { }
Employee employee = new Employee();
GetSalary(employee);
Manager manager = new Manager();

//Contra variance.
GetSalary(manager);
이번 코드에서는 직원에 월급을 주고 있습니다. 매니져도 직원이므로 월급을 주는 것이 당연합니다. 이런 경우를 Contra Variance라 하네요. 참 재미있는 용어들입니다. 언뜻 생각하면 참 당연한 말인데요. ^^;  
참 그리고 보니, InVariance 도 있습니다.
//AppointNewManager() 는 Manager 타입의 변수를 return 합니다.
Product product = AppointNewManager();
새로운 매니저를 제품으로 볼 수는 없지요. 가끔 그러고 싶은 생각도 있습니다. ㅋㅋㅋ

C# 버젼 별로 variance의 의미를 종합해 보면은요,

Variance in Arrays (C# 1.0)

Value 타입의 Integer 타입의 Array는 당연히 Double Type의 변수를 Element로 사용할 수 없습니다. Invariance 합니다. 
Int32[] numbers = new Double[3];
 
Reference 타입의 경우 아래  코드는 Covariance합니다. 단 매니져가 직원이어야 합니다., 쉽게 말하면 매니져의 부모 타입이 Employee 이지요, 근데 가끔 프리랜서도 있을수 있으므로 주의!
Employee[] employees = new Manager[3];
  
public class Animal { }
public class Lion:Animal { }
Animal[] animals = new Lion[3];
 
위 예제는 Covariance 하지만, 만약 이런경우에는 
  
public class Deer Animal }
Animal[] animals = new Lion[3];
animals[0] = new Deer();

동물에 사자도 들어 갈수 있고, 사슴도 가능하지만(Covariance), 실제 코드에서는 문제가 발생할 수 있습니다.  animals array 가 사자 우리라고 생각한다면, 들어간 사슴은 잡아 먹히겠지요. T.T

Variance in Delegate-Member Association (C# 2.0)
 
Func<Employee> generateEmployee = AppointNewManager;
Action<Manager> salaryAction = GetSalary;
 
Delegate Func<T> 는 인자는 없고, return type은 타입 T입니다. 
AppointNewManager는 Manager 타입을 return 하고 Manager 타입의 부모는  당연히 employee입니다. 즉 Covariance 합니다
 
Delegate Action<T> 는 타입 T의 변수를 인자로 받고, return 값은 없습니다.
GetSalary는 Manager 타입의 변수를 인자로 받는데, 이것 역시 매니져는 직원이므로 월급을 받을 수 있고, 아까 전에 언급한대로 Contra Variance라 부릅니다.

Variance in Generic Delegate (C# 3.0)
 
Func<Manager> generateManager = AppointNewManager;
Func<Employee> generateEmployee = genrateManager;

Action<Employee> salaryAction = GetSalary;
Action<Manager> salary = salaryAction;
 
C# 2.0 예제와는 달리 이 예제들은 Invariance 합니다. Generic delegate에 대해서는 compile error가 발생합니다. Generic 의 업격한 타입 검사가 이런 문제는 발생시키는 건가요? 
C# 4.0 에서는 이런 문제를 해결하기 위해 Generic Covariance And Contra Variance 가 등장합니다.

Variance for Generic Delegates (C# 4.0)

Covariance 를 지원하려면. OUT 
public delegate Func1<out T>();
 
Func1<Manager> generateManager = AppointNewManager;
Func1<Employee> generateEmployee = generateManager;
 
Contra Variance 의 경우는 IN
public delegate void Action1<in T>(T a);
Action1<Employee> salaryAction = GetSalary;
Action1<Manager> salary = salaryAction;

약 처음부터 이 부분을 보셨다면, C#에 익숙하지 않은 저 같은 사람은 이해 하기 가 많이 어려웠을겁니다. 그래서 공부하면서 정리한 내용과 함꼐,  가장 쉽다고 생각한 블로그에서 인용 한 것인데,  제가 잘 이해했는지 모르겠네요.  말로 설명하는 것 보다, 하나의 구체적인 예를 들고 적용해 보면 더 확실히 의미가 다가올 것 같습니다. 제 노트북에서는 Virtual PC 돌아가는 것도 상당히 버거워서 실제 컴파일은 해 보지도 못 했답니다. 양해부탁드립니다. 





'C#' 카테고리의 다른 글

Welcome to Dynamic C#(2) - Wanna be a polyglot.  (2) 2009.05.17
Welcome to Dynamic C#(1) - 첫만남.  (1) 2009.05.04
[C# 4.0] New Extension Method “Zip”  (1) 2009.04.08
[C# 4.0] Duck Typing  (6) 2009.04.06
[C# 4.0] Named and Optional Parameters  (1) 2009.04.06

[C# 4.0] New Extension Method “Zip”

C# 2009. 4. 8. 16:10 Posted by 알 수 없는 사용자

참고 : http://blogs.msdn.com/wriju/archive/2009/02/28/c-4-0-new-extension-method-zip.aspx

저는 이 방법을 알기 전에 다음과 같은 방법을 사용 했었지요.

Web 서버에 Post 방식으로 요청을 보낼때 Query String을 사용하게 되었는데, 그 형식은 다음과 같았습니다. 
custom_action_id=1&id=330&resource_type=lot&uuid=b657895
parameter 값은 각각 Key 와  Value로 구성되어 있었습니다. 그래서 위와 같은 query string을 자동으로 계산하는 방법을 생각해 보게 되었는데요...

Select 를 이용해서 원하는 구문을 얻을 수 있었지요.  사실 linq에 익숙해지기 위해 만들어 보았을 뿐 복잡하게 할 필요는 없었습니다.

근데 C# 4.0 에서 소개된 Zip 메소드를 이용해서 다른 방법으로 바꿔 볼 수 있었습니다.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace ConsoleApplication1
{
    class Program
    {
        static void Main(string[] args)
        {
            string[] parms = { "custom_action_id", "id", "resource_type", "uuid" };
            string[] values = { "1", "330", "Lot", "b53c37ed8c1f8a8075961400b1b4606eb12fd81b"};

            Console.WriteLine(ZipExtentionMethodTest(parms, values));
            Console.ReadLine();
        }

        public static string ZipExtentionMethodTest(string[] paramerters, string[] values)
        {
            // parse dict
            string ptrs = null;

            var parmStr = paramerters.Zip( values, (paramerter, value) => new
            {    
                inplace = ( values[values.Length - 1] !=  value ?
                    paramerter + "=" + value + "&" : paramerter + "=" + value
                )
            });

            foreach (var item in parmStr)
            {
                ptrs += item.inplace;
            }

            return ptrs;
        }
    }
}

위 코드랑 비교해 본다면 전 코드의 경우 Object 배열 타입의 dict란 변수를 받아서,  select  구문으로 key 와 value 값을 결합하고 인덱스가 마지막일 경우 다른 조건의 결합 을 사용하게 되어 있습니다.

그런데 Zip 코드를 이용하면, 간단히 두개의 배열로 부터 인자를 받아 하나로 합칠 수 있지요. 하지만 인덱스를 사용할 수 없어서 조건은 배열의 길이를 이용하였습니다. 

Zip을 사용하면 두개의 배열에 있는 element 들을 하나로 합칠 때 사용하면 좋은 방법이 될 것 같네요.


[C# 4.0] Duck Typing

C# 2009. 4. 6. 23:46 Posted by 알 수 없는 사용자
Dynamic 언어인 루비를 공부해 보신 분은 다음과 같은 구문을 많이 보셨을 겁니다.


X 라는 변수에 "hello" 라는 문자를 대입하고, 변수 X의 타입은 String입니다.


그리고 다시 X변수에 100을 넣으면, X변수의 타입은 Fixnum(Ruby에서 Integer를 표현하는 타입입니다)으로 변합니다.

여기에서도 알수 있듯이 동적인 언어에서는 Type이 동적으로 변합니다. 그래서 이런 속성을 이용해서 duck typing 이란 것을 구현할 수 있는데요. Dynamic language 를 주제로 검색엔진을 통해 검색해보면 항상 빠지지 않고 등장 하더군요.

그런데 왜 이름이 Duck Typing일 까요?

Ruby에서 Dynamic Typing에 관한 자료를 찾는 도중에, Duck typing을 좀 더 잘 이해할 수 있는 예제를 C# 4.0으로 구현해 보게 되었습니다.

참고 소스 : http://rubylearning.com/satishtalim/duck_typing.html


우선 Duck(오리) 클래스를 만들었고, 오리는 꽥꽥거리기도 하고(quack() 메소드), 수영도 하지요(swim())
오리만 있나요, 거위(Goose)도 있습니다. 마지막으로 오리의 꽥꽥거리는 소리를 내는 DuckRecoding이란 클래스도 만들었지요.

이제 꽥꽥거리게 만들어 보자구요.



2개의 static 메소드를 만들었습니다. parameter로 dynamic type의 duck이란 변수를 주고, 꽥꽥(quark()) 거리거나 수영(swim())하게 만들었습니다. 지금 duck변수는 오리인지, 거위인지, 아님 제 3의 조류인지 알 길이 없습니다. 

어떤 녀석들인지 확인해 보기로 하죠.


콘솔 출력을 이용해서. 첫번째 줄은, 진짜 오리로 하여금 꽥~~~~, 두번째 줄은 목소리를 녹음한 녹음기(DuckRecording)로 꽥~~~~~~, 세번째 줄은 오리 수영 시키기, 네번째 줄은 거위 수영시키기입니다.

이제 결과값을 보겟습니다.



첫번째 줄의 오리는 꽥~~ 거렷습니다. 두번째 줄은 무응답.... 세번째 줄은 오리가 수영을 하고 있군요. 네번째는 오리가 아닌 거위 수영입니다.  2번째 줄에서 예상되는 값은 꽥~~ 이었는데요, 나오지 않은 이유는 리턴 타입이 잘못 되어 있네요(죄송합니다. T.T).
아까 이렇게 선언했었지요.
 class DuckRecording
    {
        public void quack() { this.play(); }
        public string play() { return "Quark!"; }
    }


결론

위키디피아에서 Duck typing에 관해 다음과 같이 간단하게 적어 놓았네요.
If it walks like a duck and quacks like a duck, I would call it a duck.
오리처럼 행동하면 오리라 부를수 있다는 의미. String 처럼 행동한다면, String으로 다루어도 된다는 이야기. 결국 오브젝트의 부모나, 인터페이스의 영향보다, 그 오브젝트가 가진 메소드나 속성에 의해 그 오브젝트의  역활이 결정된다는 표현이 아닐까 하는게 제 생각입니다.

참고 사항 :  IronRuby에서 Fixnum 타입의 값이 to_f (Float type으로 변환)이 되지 않았습니다. 이유는 잘 모르겠네요. "methods"로 전체 메소드를 보면 to_f가 없는 것 같습니다. 

제가 알고 있는 Dynamic 언어인, Object C의 경우 Dynamic Object가 메소드를 호출 할 떄  런타임 하에서 그 오브젝트에 속한 메소드를 찾지 못하는 경우 런타임에서 경고로 넘어갑니다만, C# 4.0 에서는 Runtime Error 와 함께 VSTS 2010 이 죽고, Virtual PC가 얼어버리네요. 이 점은 정식 버젼이 나오면 다시 확인해 보고 싶습니다.

comment 를 확인하다 보니, 제가 쓴 글에 잘못된 내용이 있는 것 같네요. 그래서 글을 좀 수정했고요, 좋은 의견과 배움에 감사드립니다.  


[C# 4.0] Named and Optional Parameters

C# 2009. 4. 6. 15:34 Posted by 알 수 없는 사용자

Flex로 ActionScript 프로그래밍을 하다 보면 아래와 같은 메소드 선언을 많이 볼수 있습니다.
 
public function hitTestPointer(x:Number, y:Number, shapFlag:Boolean = false): Boolean
 
 Parameter 값에 Default 값을 넣어 사용하는 것은 ActionScript로 작업하고 있는 저로는 익숙한 표현이었지만, 가끔 다른 언어를 사용하다 보면 이런 표현이 있었으면 좋겠다고 생각했는데, 마침 C# 4.0에서 이런 문법을 사용할 수 있게 되었습니다. 위 코드 처럼 Boolean 타입인 shapFlag 의 값에 false 값을 넣어주는 것을 Optional Parameter 라고 하고, Default Parameter라고 부르기도 하더군요.
(지금 코드는 C#입니다)

 
public class Test
{
   public bool  hitTestPointer(float x, float y, bool shapeFlag = false)
   {
      .....................
   }
}
 
 
 그런데, Actionscript 와 차이점이 있다면, Parameter의 위치를 사용자가 원하는 대로 바꿀 수 있다는 점입니다. 예를 들어 Actionscript의 경우 Optional parameter 의 선언은 일반 parameter 뒤 이거나, 아니면, 전부 Optional parameter 로 선언해야 합니다. 

예들 들어
Actionscript )
hitTestPointer( 10, 10)  ------------>  OK
hitTestPointer( 10, false, 10) ---------> Error
hitTestPointer( 10, false) ------------> Error
하지만, C# 4.0 에서는 Named parameter 로 이 문제를 해결할 수 있습니다.
C# 4.0 )
hitTestPointer( 10, 10)  ------------>  OK
hitTestPointer( x: 10, shapFlag: false, y: 10) ---------> OK
hitTestPointer( x: 10, shapFlag: false) ------------> Error (y는 Optional Parameter 가 아님)
두번째 포스팅 하는 건데, (첫번째 포스팅은 내용에 맞지 않아 삭제함) 공부하다 제가 느낀 점만 간단히 적다보니 제대로 내용이 전달 되는 건 지 모르겟습니다. 관심 분야는 RIA 인데, C# 4.0 공부를 않 할 수가 없더라고요. 제 공부방향은 C# 4.0 의 내용을 파악한 뒤에 RIA 쪽으로 넘어가는 겁니다. 그런데, 아직 3.5 도 제대로 잘 모른다는...   어여튼 열심히 ^^