concurrent_vector의 주요 멤버

 

자주 사용하는 것들과 STL vector에 없는 것들을 중심으로 추려 보았습니다.

멤버

스레드 세이프

 

at

O

 

begin

O

 

back

O

 

capacity

O

 

empty

O

 

end

O

 

front

O

 

grow_by

O

new

grow_to_at_least

O

new

max_size

O

 

operator[]

O

 

push_back

O

 

rbegin

O

 

rend

O

 

size

O

 

assign

X

 

clear

X

 

reserve

X

 

resize

X

 

shink_to_fit

X

new

 

concurrent_vector는 기존 요소의 값을 변경할 때는 스레드 세이프하지 않습니다. 기존 요소의 값을 변경할 때는 동기화 객체를 사용하여 lock을 걸어야 합니다.

 

 

concurrent_vector 사용 방법

 

concurrent_vector를 사용하기 위해서 먼저 헤더 파일을 포함해야 합니다.

concurrent_vector의 헤더 파일은 “concurrent_vector.h” 입니다.

 

concurrent_vector의 사용 방법은 STL vector를 사용하는 방법과 거의 같습니다. 그러니 STL vector에 없는 것들만 제외하고는 vector를 사용하는 방법을 아는 분들은 따로 공부해야 할 것이 거의 없습니다.

STL vector에 대해서 잘 모르시는 분들은 About STL : C++ STL 프로그래밍(4)-벡터 글을 참고해 주세요.

 


 

concurrent_vector 초 간단 사용 예


concurrent_vector를 사용한 아주 아주 간단한 예제입니다.^^

 

#include <ppl.h>

#include <concurrent_vector.h>

#include <iostream>

 

using namespace Concurrency;

using namespace std;

 

 

int main()

{

           concurrent_vector< int > v1;

           v1.push_back( 11 );

           return 0;

}

 

 


STL vector에는 없는 grow_by, grow_to_at_least 사용 법

 

grow_by vector의 크기를 확장해 줍니다.

예를 들어 현재 vector의 크기가(size()에 의한) 10인데 이것을 20으로 키우고 싶을 때 사용합니다.

 

원형은 아래와 같습니다.

iterator grow_by( size_type _Delta );

iterator grow_by( size_type _Delta, const_reference _Item );

 

grow_to_at_least는 현재 vector의 크기가 10인데 이것이 20보다 작을 때만 20으로 증가시키고 싶을 때 사용합니다.

원형은 아래와 같습니다.

iterator grow_to_at_least( size_type _N );

 

grow_bygrow_to_at_least의 반환 값은 추가된 처음 요소의 위치가 반복자입니다.

 

grow_by의 예제 코드입니다.

void Append ( concurrent_vector<char>& vector, const char* string) {

    size_t n = strlen(string) + 1;

    memcpy( &vector[vector_grow_by(n)], string, n+1 );

}

위 예제는 http://japan.internet.com/developer/20070306/27.html 에서 참고했습니다.

 

 


shink_to_fit


shink_to_fit는 메모리 사용량과 단편화를 최적화 시켜줍니다. 이것은 메모리 재할당을 하기 때문에 요소에 접근하는 모든 반복자가 무효화됩니다.


 

Intel TBB


CPU로 유명한 Intel에서는 멀티코어 CPU를 만들면서 병렬 프로그래밍을 좀 더 쉽고, 안전화고, 확장성 높은 프로그램을 만들 수 있도록 툴과 라이브러리를 만들었습니다.

라이브러리 중 TBB라는 병렬 프로그래밍 용 라이브러리가 있습니다. 아마 TBB를 아시는 분이라면 Concurrent Runtime PPL에 있는 것들이 TBB에 있는 것들과 비슷한 부분이 많다라는 것을 아실 것입니다.

VSTS 2010 Beta2가 나온지 얼마 되지 않아서 병렬 컨테이너에 대한 문서가 거의 없습니다. 그러나 TBB에 관한 문서는 검색을 해보면 적지 않게 찾을 수 있습니다. concurrent_vector에 대해서 좀 더 알고 싶은 분들은 Intel TBB에 대해서 알아보시면 좋을 것 같습니다.

( 참고로 TBB 관련 서적이 한국어로 근래에 출간되었습니다.  http://kangcom.com/sub/view.asp?sku=200911100001 )

 


다음에는 concurrent_queue에 대해서 알아 보겠습니다.

저작자 표시
신고

Visual Stuido 2010 Beta2가 나오면서 제가 기대하고 있었던 병렬 컨테이너가 드디어 구현되었습니다.

 

Concurrency Runtime(이하 ConRT)에는 총 3개의 병렬 컨테이너를 제공합니다. Beta2에서는 모두 다 구현되지는 못하고 concurrent_vector concurrent_queue 두 개가 구현되었습니다. 아직 구현되지 않은 것은 concurrent_hash_map 입니다.

 

세 개의 컨테이너들은 C++ STL의 컨테이너 중에서 가장 자주 사용하는 것으로 vector, deque, hash_map 컨테이너의 병렬 버전이라는 것을 이름을 보면 쉽게 알 수 있을 것입니다.

 

STL에 있는 컨테이너와 비슷한 이름을 가진 것처럼 사용 방법도 기존의 컨테이너와 비슷합니다. 다만 병렬 컨테이너 답게 스레드 세이프하며, 기존의 컨테이너에서 제공하는 일부 기능을 지원하지 못하는 제한도 있습니다.

 

 

몇 회에 나누어서 concurrent_vector concurrent_queue에 대해서 설명해 나가겠습니다.

이번에는 첫 번째로 concurrent_vector에 대한 것입니다.

 

 

 

concurrent_vector란?

 

STL vector와 같이 임의 접근이 가능한 시퀀스 컨테이너입니다. concurrent_vector는 멀티 스레드에서 요소를 추가하던가 특정 요소에 접근해도 안전합니다. 반복자의 접근과 순회는 언제나 멀티 스레드에서 안전해야 하므로 요소를 추가할 때는 기존의 인덱스와 반복자를 무효화 시키면 안됩니다.

 

 

concurrent_vector vector의 차이점


기능

vctor

Concurrent_vector

추가

스레드에 안전하지 않음

스레드에 안전

요소에 접근

스레드에 안전하지 않음

스레드에 안전

반복자 접근 및 순회

스레드에 안전하지 않음

스레드에 안전

push_back

가능

가능

insert

가능

불가능

clear

모두 삭제

모두 삭제

erase

가능

불가능

pop_back

가능

불가능

배열식 접근 예. &v[0]+2

가능

불가능

 

 

grow_by, grow_to_at_least (vector resize와 비슷)는 스레드에 안전

 

 

추가 또는 resize 때 기존 인덱스나 반복자의 위치가 바뀌지 않음

 

 

bool 형은 정의 되지 않았음

 


concurrent_vector에 대한 설명을 이번에는 소개 정도로 끝내고 다음부터는 본격적으로 Concurrent_vector을 어떻게 사용하면 되는지 상세하게 설명해 나가겠습니다.^^


저작자 표시
신고
세번째입니다.

관련 디버깅 유틸과 PPL 지원 알고리즘, 이미징 예제 병렬화, 동기화 개체자료구조 등이 소개됩니다.


잘못된 번역이나 부족한 부분 있으면 알려주세요. ^^
신고