이 글은 MSDN 글, "Solving The Dining Philosophers Problem With Asynchronous Agents"를 참고하여 작성되었습니다.

Asynchronous Agents Library로 Dining Philosophers 문제 해결하기 - 1
Asynchronous Agents Library로 Dining Philosophers 문제 해결하기 - 2

오래 기다리셨습니다; 그간 일이 바빠서;; 어쨌든 지난번에 Concurrecy::agent 에서 상속받은 Philosopher 클래스를 살펴봤었죠. 아래 두 함수만 제외하고 말입니다.

자 먼저 젓가락을 집는 함수입니다. 젓가락 한쌍을 동시에 집어야지 하나만이라도 먼저 집으려고 하다간 서로 젓가락 하나씩 잡고 기다리는 데드락 상황이 발생할 수 있습니다. 이를 위해 쓰이는 것이 지난 회에 잠깐 언급했든 join 메시지 블록입니다. 그 중에서도 non_greedy 버전을 사용해야 합니다. non_greedy 버전은 명시된 타겟을 모두 얻을 수 있을 때에만 실제 획득을 시도합니다. gready 버전을 사용하면 전술한 것처럼 데드락이 발생할 수 있습니다.

   73     std::vector<Chopstick*> PickupChopsticks()

   74     {

   75         //join 생성

   76         Concurrency::join<Chopstick*,Concurrency::non_greedy> j(2);

   77         m_LeftChopstickProvider->link_target(&j);

   78         m_RightChopstickProvider->link_target(&j);

   79 

   80         //젓가락 한쌍을 집습니다.

   81         return Concurrency::receive (j);

   82     } 


젓가락을 내려놓은 것은 간단합니다. 비동기 메시지 전송 함수인 Concurrency::asend()를 사용하여 젓가락이 이용가능함을 알리면 끝입니다.

   83     void PutDownChopsticks(std::vector<Chopstick*>& v)

   84     {

   85         Concurrency::asend(m_LeftChopstickProvider,v[0]);

   86         Concurrency::asend(m_RightChopstickProvider,v[1]);

   87     }


마지막으로 철학자들과 젓가락, 젓가락제공자를 가지고 이들 모두를 셋업하는 역할을 하는 Table 클래스입니다. 주석을 참고하시면 쉽게 이해하실 수 있을 겁니다.

  100 template<class PhilosopherList>

  101 class Table

  102 {

  103     PhilosopherList & m_Philosophers;

  104     std::vector<ChopstickProvider*> m_ChopstickProviders;

  105     std::vector<Chopstick*> m_Chopsticks;

  106 

  107     //이 생성자는 Table 클래서에서 유일한 public 메소드로 vector 변수들을 초기화하고 각 철학자에게 젓가락제공자를 할당합니다:

  108 public:

  109     Table(PhilosopherList& philosophers): m_Philosophers(philosophers)

  110     {

  111         //젓가락 및 젓가락제공자 vector를 채웁니다

  112         for(size_t i = 0; i < m_Philosophers.size();++i)

  113         {

  114             m_ChopstickProviders.push_back(new ChopstickProvider());

  115             m_Chopsticks.push_back(new Chopstick("chopstick"));

  116             //젓가락제공자에 젓가락을 놓습니다

  117             send(m_ChopstickProviders[i],m_Chopsticks[i]);

  118         }

  119         //철학자들을 식탁 자리에 앉힙니다

  120         for(size_t leftIndex = 0; leftIndex < m_Philosophers.size();++leftIndex)

  121         {

  122             //rightIndex 계산

  123             size_t rightIndex = (leftIndex+1)% m_Philosophers.size();

  124 

  125             //왼쪽,오른쪽 제공자를 해당 철학자에 부여합니다

  126             Concurrency::asend(& m_Philosophers[leftIndex].LeftChopstickProviderBuffer,

  127                 m_ChopstickProviders[leftIndex]);

  128             Concurrency::asend(& m_Philosophers[leftIndex].RightChopstickProviderBuffer,

  129                 m_ChopstickProviders[rightIndex]);

  130         }

  131     }

  132     ~Table(){

  133         m_ChopstickProviders.clear();

  134         m_Chopsticks.clear();

  135     }

  136 

  137 };


드디어 대망의 main() 함수입니다. 상태표시를 위한 call 블록과 C++0x 람다의 사용 이외에는, 전술할 클래스들을 사용하고 있을 뿐입니다.

  206 int main()

  207 {

  208     //tr1 array를 사용해 철학자들을 생성합니다

  209     std::tr1::array<Philosopher,5> philosophers = {"Socrates", "Descartes", "Nietzche", "Sartre", "Amdahl"};

  210     Table<std::tr1::array<Philosopher,5>> Table(philosophers);

  211     //상태표시에 이용할 call 블록들의 목록을 생성합니다

  212     std::vector<Concurrency::call<PhilosopherState>*> displays;

  213     //철학자 에이전트를 구동하고 상태표시 항목을 생성합니다

  214     std::for_each(philosophers.begin(),philosophers.end(),[&displays](Philosopher& cur)

  215     {

  216         //상태표시용 call 블록을 하나 만듭니다

  217         Concurrency::call<PhilosopherState>* consoleDisplayBlock = new Concurrency::call<PhilosopherState>([&](PhilosopherState in){

  218             //cout은 각 출력 사이의 스레드안정성을 보장하지 않습니다

  219             if(in == Eating)

  220                 std::cout << cur.m_Name << " is eating\n";

  221             else

  222                 std::cout << cur.m_Name << " is  thinking\n";

  223         });

  224         //상태표시 블록을 연결하고 벡터에 저장해둡니다

  225         cur.CurrentState.link_target(consoleDisplayBlock);

  226         displays.push_back(consoleDisplayBlock);

  227         //그리고 에이전트를 구동합니다

  228         cur.start();

  229     });

  230     //모두 완료되기를 대기

  231     std::for_each(philosophers.begin(),philosophers.end(),[](Philosopher& cur)

  232     {

  233         cur.wait(&cur);

  234     });

  235 

  236     displays.clear();

  237 };


이상을 실행하면 다음과 유사한 결과를 확인하실 수 있습니다.


주석에도 나와있듯이 스레드에 안전하지 않은 cout 출력으로 가끔 상태 메시지가 섞여였음을 확인할 수 있습니다. 그것 이외에는 철학자들이 사이좋게 식사를 하고 있음을 알 수 있습니다.

이렇듯 AAL을 사용하면 저수준의 스레드 함수나 동기화 개체들을 직접 다루지 않고도 쉽게 병렬 수행 작업을 작성할 수 있습니다. 병렬화에 고민하지 않고, 해당 응용프로그램의 도메인 문제에만 집중할 수 있는 것이죠.


이상입니다. 이제 새로운 로고와 함께 VS2010의 베타2도 나왔으니, 새로운 주제로 다시 찾아뵙지요. ^^
이 글은 MSDN 글, "Solving The Dining Philosophers Problem With Asynchronous Agents"를 참고하여 작성되었습니다.

Asynchronous Agents Library로 Dining Philosophers 문제 해결하기 - 1

자, 이제 본격적으로 코드를 살펴보기 전에 메시지 블록이 무엇인지 먼저 짚고 넘어가겠습니다. AAL액터모형을 사용한다고 말씀드렸습니다. 또한, 액터모형에서 액터들은 메시지만으로 통신한다고 말씀드렸죠. 이 때 메시지를 받는 대상 혹은 메시지의 출처의 역할을 하는 것이 메시지 블록입니다. 전자의 경우 목적(target) 블록이라 하고, 후자는 원천(source) 블록이 됩니다.

전회에서 이번 예제에 쓰이는 네가지 메시지 블록을 소개했었는데요. unbounded_buffer는 목적 및 원천으로 쓰이며 큐와 같이 여럿의 메시지를 담고 있을 수 있는 놈입니다. overwrite_buffer는 하나의 변수처럼 값 하나만을 지니며, 새로 메시지가 올 경우 기존 값은 덮어씌여집니다. 역시 원천으로도 쓰일 수 있으며, 이 경우 사본을 보냅니다. 반면, call목적 블록으로만 쓰여 메시지 도착 시 특정 함수개체를 불러주는 기능을 합니다. join은 이번 예제에서 핵심 역할을 하는 블록으로서 여러 메시지를 동시에 기다려 하나로 묶어 출력하는 기능을 합니다.

먼저 가장 간단한 Chopstick 클래스를 살펴보죠.

   22 class Chopstick{

   23     const std::string m_Id;

   24 public:

   25     Chopstick(std::string && Id):m_Id(Id){};

   26     const std::string GetID()

   27     {

   28         return m_Id;

   29     };

   30 };


이와 같이 젓가락 식별용의 문자열을 가질뿐입니다. 생성자에서 r-value 참조를 쓰고 있다는 것 정도가 주목할만한 사항이겠군요.

다음은 ChopstickProvider로 다음과 같이 단순히 typedef입니다.

   34 typedef Concurrency::unbounded_buffer<Chopstick*> ChopstickProvider;


unbounded_buffer 메시지 블록을 이용해 메시지로 젓가락을 받으면 담고 있다가 철학자의 요청이 있으면 제공하는 역할을 합니다. 물록 철학자가 한입 먹고 나선 다시 젓가락을 놓으면 다시 받아놓는 역할도 합니다. 이 예제에서는 unbounded_buffer의 개수무제한(unbounded) 특성이 사실 굳이 필요 없습니다만 그래도 unbounded_buffer의 move semantic이 필요하기에(이 점에서 사본을 보내는 overwrite_buffer와는 다르죠) 이를 쓰는 것입니다.

다음이 대망의 Philosopher 클래스가 되겠습니다. 먼저, Concurrency::agent에서 public 상속을 받고 있는 것을 확인할 수 있습니다. 말씀드린 것처럼 각 철학자가 액터가 되어 독립적으로 동작하기 (즉, 별도 스레드로) 위함입니다.

   35 class Philosopher : public Concurrency::agent

   36 {

   37     ChopstickProvider* m_LeftChopstickProvider;

   38     ChopstickProvider* m_RightChopstickProvider;

   39 

   40 public:

   41     const std::string m_Name;

   42     const size_t  m_Bites;

   43     Philosopher(const std::string&& name, size_t bites=10):m_Name(name),m_Bites(bites){};

   44     Concurrency::unbounded_buffer<ChopstickProvider*> LeftChopstickProviderBuffer;

   45     Concurrency::unbounded_buffer<ChopstickProvider*> RightChopstickProviderBuffer;

   46     Concurrency::overwrite_buffer<PhilosopherState> CurrentState;

   47     void run()

   48     {

   49 

   50         //run에서 제일 먼저 해야하는 것은 ChopstickProvider를 초기화하는 것입니다. 여기서는 receive를 통해 public 변수에 메시지가 도착하기를 기다리게 하는 방식으로 처리합니다:

   51 

   52         //ChopstickProvider들을 초기화합니다.

   53         m_LeftChopstickProvider  = Concurrency::receive(LeftChopstickProviderBuffer);

   54         m_RightChopstickProvider = Concurrency::receive(RightChopstickProviderBuffer);

   55 

   56         //이제 생각하다가 먹기를 반복해야 합니다. 그를 위해 아직 등장하지 않은 두 함수(PickupChopsticks과 PutDownChopsticks)를 이용하려고 합니다:

   57 

   58         for(size_t i = 0; i < m_Bites;++i)

   59         {

   60             Think();

   61             std::vector<Chopstick*> chopsticks(PickupChopsticks());

   62             Eat();

   63             PutDownChopsticks(chopsticks);

   64         }

   65 

   66         //남은 일은 run 메소드를 나가기 전에 정리 작업을 하는 것인데, 다른 곳에 쓰일 수 있도록 ChopstickProvider를 반환하고 에이전트의 상태를 완료로 설정하고 있습니다.

   67         Concurrency::send(LeftChopstickProviderBufferm_LeftChopstickProvider);

   68         Concurrency::send(RightChopstickProviderBuffer, m_RightChopstickProvider);

   69 

   70         this->done(Concurrency::agent_done);

   71     }

   72 

   73     std::vector<Chopstick*> PickupChopsticks()

   74     {

   75         //join 생성

   76         Concurrency::join<Chopstick*,Concurrency::non_greedy> j(2);

   77         m_LeftChopstickProvider->link_target(&j);

   78         m_RightChopstickProvider->link_target(&j);

   79 

   80         //젓가락을 듭니다.

   81         return Concurrency::receive (j);

   82     } 

   83     void PutDownChopsticks(std::vector<Chopstick*>& v)

   84     {

   85         Concurrency::asend(m_LeftChopstickProvider,v[0]);

   86         Concurrency::asend(m_RightChopstickProvider,v[1]);

   87     }

   88 private:

   89     void Eat()

   90     {

   91         send(&CurrentState,Eating);

   92         RandomSpin();

   93     };

   94     void Think()

   95     {

   96         send(&CurrentState,Thinking);

   97         RandomSpin();

   98     };

   99 };


그 다음으로 한쌍의 젓가락을 위한 두 ChopstickProvider 포인터 변수(m_LeftChopstickProvider, m_RightChopstickProvider)가 보입니다. 철학자 이름(m_Name)과 몇번 먹을지를 나타내는 변수(m_Bites), 생성자까지는 파악하시는데 어려움이 없을 겁니다.

ChopstickProvider (이 자체도 unbounded_buffer인데) 포인터를 템플릿 인자로 가지는 unbounded_buffer 변수 한쌍이 등장하는데요. (44,45줄) 철학자가 젓가락을 소유하고 있는 상황이 아니고 철학자와는 별개로 젓가락들이 존재하는 상황이기에 필요한 변수들입니다. 이 두 public 변수들을 통해, 나중에 철학자들에게 필요할 때 젓가락을 제공해주는 ChopstickProvider를, 어딘가에서 받을 수 있습니다. 이들을 갖추고 나면 그 후부터 생각하다가 먹다가 할 수 있겠죠.

그 뒤로 run 메소드가 나옵니다. 실제 액터가 구동되면 수행될 함수입니다. 먼저, 전술한 두 변수를 통해 ChopstickProvider가 제공되기를 기다립니다. 이 때 Concurrency::receive 함수를 쓰고 있습니다. (이의 비동기 버전인 Concurrency::try_receive도 있습니다.)

58줄부터는 생각하다 먹기를 반복하는 반복문이 나옵니다. ThinkEat 함수는 89줄 이하에서 확인할 수 있는 것처럼 철학자의 현재 상태를 나타내는 overwrite_buffer 형의 변수 CurrentState를 설정하는 것 이외에는 특별히 하는 일이 없습니다. 그냥 시간을 좀 지체할 뿐입니다.

그리고 이 두 함수 호출 사이에 PickupChopsticksPutDownChopsticks 함수를 써서 실제 가장 중요한 젓가락 한 쌍을 안전하게 획득하고 다시 내려놓는 일을 합니다.


이에 대한 설명은 다음 회를 기대해주세요~ ^^
이 글은 MSDN 글, "Solving The Dining Philosophers Problem With Asynchronous Agents"를 참고하여 작성되었습니다.

오늘은 AAL(Asynchronous Agents Library)의 액터기반프로그래밍을 사용하여, 동기화 개체들로는 해법이 상당히 골치아프기로 유명한 "철학자들의 식사(Dining Philosophers) 문제"를 풀어보겠습니다. 내용이 길어질듯 하여 3회의 연재글로 구성하려 합니다.

먼저 간단히 철학자들의 식사 문제를 소개하면,


간단히 위 그림과 같은 상황입니다. 철학자 다섯명이 식사를 하는데 젓가락(그림에는 포크지만 상관없습니다;)이 보시는바와 같이 역시 다섯개뿐입니다. 그들은 철학자답게 생각하다가 한입 먹다가를 반복합니다. 한입 먹으려면 젓가락 한쌍이 필요해서 옆사람이 사이에 놓인 젓가락을 이미 선점해 먹고 있다면 기다려야 하는 것이죠. 공유 상태를 고려하지 않고 구현하면 데드락 등으로 철학자가 굶는(starvation) 상황이 발생할 수 있습니다. 이 문제는 저명한 컴퓨터과학자 다익스트라가 처음 제시하였습니다. 모니터 등의 동기화 개체를 사용하여 해결하는 방법이 기존에 많이 설명되어 있습니다만... 솔직히 이해하기가 쉽지 않고 구현도 어렵습니다.

이때 AAL이 제공하는 액터모형을 이용하면 그러한 난해함이나 복잡함 없이 이 문제를 해결할 수 있습니다. 액터모형은 독립적으로 동작하며 서로간에는 오로지 메시지만으로 소통하는(즉, 공유 상태를 가지지 않는) 액터들로 시스템을 모델링하는 방법이라 하겠습니다.

본 예제에서는 철학자를 액터(AAL 용어로는 에이전트)로 보고 메시지 전달을 위해 AAL에서 제공하는 몇몇 메시지 블록(message block)들을 사용하여 철학자들의 식사 문제를 해결합니다.

다음과 같은 다섯 클래스들을 작성하게 됩니다.

  • Chopstick 클래스
  • 식탁 위의 젓가락을 실제 소유하며 요청에 따라 철학자에게 제공하는 역할을 하는 ChopstickProvider 
  • 생각하고 먹는 에이전트 역할의 Philosopher 클래스. 이 클래스는 한쌍의 ChopstickProvider와만 소통합니다.
  • 생각하고 먹는 상태를 나타내는 PhilosopherState 열거형
  • 젓가락들과 철학자들이 배치될 Table 클래스

이 과정에서 다음과 같은 AAL의 클래스 및 함수들을 이용합니다.
  • Concurrency::agent - 에이전트 기반 클래스
  • 이하는 메시지 블록에 속하는 여러 타입들
    • Concurrency::unbounded_buffer
    • Concurrency::overwrite_buffer
    • Concurrency::join
    • Concurrency::call
  • 이상의 메시지 블록들에 메시지를 주고 받는데 사용하는 함수들
    • Concurrency::send
    • Concurrency::asend - 위의 비동기 버전으로, 받음 여부를 확인하지 않고 바로 리턴
    • Concurrency::receive

본격적인 구현 과정은 다음 회에 계속됩니다~ ^^