오늘은 DX9 세대의 테셀레이션 마지막입니다.
ATI 는 DirectX9를 지원하는 일부 그래픽카드들은 하드웨어 기반의 테셀레이션 작업을 지원합니다.
( HD 2000 시리즈 이후 지원되었다고 합니다. )
이 방법은 왜 DirectX11의 테셀레이션 작업이 강력한지를 이해하는 좋은 출발점이 될 수 있습니다.

이 경우에는그래픽 파이프라인 구조가 다음과 같습니다.




이는 현재 X-BOX 360 에도 동일하게 적용되는 그래픽 파이프라인 구조입니다.
주목할 만한 것은 Tessellator의 위치입니다.
즉, 버텍스 쉐이더( VertexShader ) 스테이지의 앞단계에 위치하고 있습니다.
이 위치는 DX11 세대에서는 버텍스 쉐이더 다음 단계로 변경됩니다.


아래의 그림은 ATI 카드에서 지원되는 DX9 기반의 테셀레이션 작업을 보여줍니다.



DirectX9의 테셀레이션을 위해서 총 3번의 패스를 통과해야 합니다.
즉, 3번의 렌더링 작업이 필요합니다.
이렇게 많은 패스가 필요한 이유는 테셀레이션을 위해서 인접한 정점의 정보가 필요하기 때문입니다.
DX9 의 시대에서는 VertexShader 단계에서 인접한 정점의 정보를 쉽게 확인할 수 있는 방법이 없습니다.
그래서 인접한 정보를 구성하는 단계가 첫번째 패스입니다.

첫번째 패스의 렌더타겟은 백버퍼가 아니라, 텍스쳐입니다.
이 텍스쳐에 정점 정보와 정점의 인덱스를 기록하게 됩니다.
즉, rgb 에는 위치 정보가 기록되며 a 에는 정점의 인덱스 정보가 기록됩니다.

이 때, 주의할 것은 메시가 인덱스 버퍼 기반으로 렌더링 되어지는 경우입니다.
이 경우에는 인덱스 버퍼를 모두 풀어서 새로운 버텍스 버퍼를 만들어야 합니다.
우리가 필요한 것은 폴리곤을 렌더링하는 작업이 아닙니다.
인접정보를 구성하는 일임을 잊지 말아야 합니다.
첫번째 패스에서의 렌더링은 TRIANGLELIST가 아니라, POINTLIST 로 수행하게 됩니다.

또 하나 주의할 것이 있습니다.
POINTLIST 로 렌더링을 수행할 때는 WVP( World-View-Projection ) 변환이 아니라,
World-View까지만 변환
을 해야 합니다.
이유는 간단합니다.
테셀레이션은 주로 시점에 근거해서  얼마나 많은 폴리곤을 생성할지를 판단해야 합니다.
이를 앞 시간들을 통해서 Adaptive 한 방식이라고 언급을 했었습니다.
이후의 패스에서는 이들 정점에 근거해서 LOD를 판정해서 Tessellation Factor 를 연산하게 되니다.
그래서 View 좌표계까지만 변환을 합니다.
첫번째 패스에서는 이렇게 View 공간으로 POINTLIST들을 텍스쳐에 렌더링 합니다.

이렇게 생성된 텍스쳐를 기반으로 해서 두번째 패스를 진행할 수 있습니다.
DX9 를 지원하는 모든 그래픽카드가 VertexShader 단계에서 텍스쳐 데이터를 읽어올 수 있는 것은 아닙니다.
이런 제약 사항들은 이제 큰 의미가 있는 것이 아니기 때문에,
개념적인 것에 포커스를 두시기 바랍니다.^^

두번째 패스의 목적은 Tessellation Factor를 구하는 것입니다.
즉, 얼마나 폴리곤을 세분화 할지를 결정합니다.
두번째 패스도 역시 POINTLIST 로 렌더링을 합니다.
그리고 첫번째 패스에서 생성해둔 인접 정점 정보를 가진 텍스쳐를 바인딩 합니다.
인접 정보가 있기 때문에 현재 정점을 기준으로 Tessellation Factor 를 계산할 수 있습니다.
두번째 패스에서 주의할 것은 이들 Tessellation Factor 를 저장하기 위해
R2VB 라는 일종의 버퍼에 렌더링
을 한다는 것입니다.
이는 ATI 테셀레이션 라이브러리에만 존재하는 개념입니다.

세번째 패스는 실제로 지오메트리(Geometry)를 렌더링 하는 단계입니다.
실제 렌더링 작업은 TRIANGLELIST 로 렌더링 합니다.
인덱스 기반의 렌더링이 아니라,
우리가 인덱스를 풀어서 생성한 버텍스버퍼로 렌더링 하는 것에 주의해야 합니다.
이때 스트림(Stream) 을 하나 더 연결하는데,
이것은 앞서 우리가 렌더링 했던 R2VB 라는 버퍼
입니다.

결과적으로 VertexShader 에는 Barycentric coordiate 기반의 가중치 값이 전달됩니다.
즉, 무게 중심 좌표입니다.

float3 vPosTessOS = i.vPositionVert0.xyz * i.vBarycentric.x +
                              i.vPositionVert1.xyz * i.vBarycentric.y + 
                              i.vPositionVert2.xyz * i.vBarycentric.z;


정점을 구성하는 방법은 위처럼 해야 합니다.

이상으로 DX9 세대의 테셀레이션 작업들에 대해서 아주 간단히 살펴보았습니다.
메인으로 다룰 내용이 아니라서, 쉽게 넘어간 부분이 많습니다.
아무래도 거의 사용하지 않기 때문에, 깊이있게 다루는 것은 의미가 없다고 생각합니다.

하지만, DX9 세대의 테셀레이션 작업은 이렇게 복잡한 방법과 절차를 통과해야 합니다.
DX11 의 테셀레이션 작업은 상대적으로 빠른 성능으로 구현이 됩니다.
왜냐하면 1 Pass 이기 때문입니다.


ATI 는 DX9 세대의 테셀레이션 작업을 위해서, 라이브러리를 제공하고 있습니다.
더 필요한 정보가 있으시면, 아래의 링크를 참고하시기 바랍니다.

http://developer.amd.com/gpu/radeon/Tessellation/Pages/default.aspx#d3d9
신고
크리에이티브 커먼즈 라이선스
Creative Commons License


DirectX SDK February 2010  버전까지는 'EnhancedMesh' 라는 샘플이 있었습니다.
아쉽게도 2010 June 버전에서 이 샘플은 사라졌습니다.
메시의 퀄리티를 향상시키는 샘플인데, 실제로는 폴리곤 갯수를 증가시키고 있습니다.
굳이 실행을 실켜보실 이유는 없습니다. ^^

ID3DXMesh 인터페이스에는 멤버함수로 CloneMeshFVF() 를 가지고 있습니다.
이 멤버함수의 옵션으로 D3DXMESH_NPATCHES 을 사용하게 되면,
하드웨어 가속을 받아서 폴리곤을 증가시킬 수 있습니다.
물론 내부적으로는 많은 연산을 수행할 것입니다.



만약 테셀레이션 작업이 그래픽카드에서 지원을 해주지 않는다면,
이는 CPU 기반으로 작업을 수행해야 합니다.
바로 이를 도와주는 API 가 D3DXTessellateNPatches() 입니다.



이렇듯 DirectX9 세대에도 테셀레이션을 위해서 API들을 지원해 주고 있었습니다.
물론 정식으로 그래픽카드에서 지원을 하지 않았기 때문에,
성능에 많은 문제점을 가지고 있었습니다.
테셀레이션 자체가 근본적으로 많은 연산을 수반하기 때문입니다.

다음 시간에는, 마지막으로 ATI의 DirectX9 기반의 테셀레이션 작업에 대해서 살펴보도록 하겠습니다.^^

신고
크리에이티브 커먼즈 라이선스
Creative Commons License


DirectX11 을 통해서 가장 많은 관심을 가지고 있는 부분 중 하나인 테셀레이션( Tessellation )은
갑자기 등장한 새로운 기능이 아닙니다.


< DirectX9에서의 테셀레이션의 등장 >

DirectX9 이 처음 세상에 등장할 때, 아래와 같은 특징들을 나열했었습니다.

- 2-D support
blt, copy, fill operations, GDI dialogs
- Adaptive tessellation
- Displacement mapping
- Two-sided stencil operations
- Scissor test rect
- Vertex stream offset
- Asynchronous notifications
- VS / PS 2.0
Flow control, float pixels
- Multiple render targets
- Gamma correction


Adaptive tessellation 이 보이시죠?
저도 그냥 무심코 지났던 DirectX9 소개 자료에서 우연히 찾았습니다.^^


< Adaptive tessellation >

테셀레이션에는 몇 가지 방법이 있는데,
그 중에 가장 유명한 것이 Adaptive 형식과 Uniform 형식입니다.
아래의 이미지를 보시기 바랍니다.


< 이미지 출처 : GPU Gems 2권 >


좌측의 경우가 Adaptive 한 방식입니다.
Adaptive 한 방식을 간단히 설명드리면,
시점의 위치에 근거에서 얼마나 많은 면을 생성할 지를 판단해서,
테셀레이션 작업
을 하는 것입니다.

반면에 Uniform 한 방식은,
모두 균일한 면의 갯수로 테셀레이션 작업을 수행하는 방법
입니다.
Uniform 한 방식이 더 연산 수가 많은 것이 일반적이기 때문에,
Adaptive 한 방식이 게임 분야에서 주로 사용됩니다.



< 테셀레이션을 위해 필요한 정보 >

테셀레이션 작업을 위해서는 두 가지가 필요합니다.
그것은 제어점들( Control Points )과 테셀레이션 팩터들( Tessellation Factors ) 입니다.
제어점들은 파이프라인에 입력으로 들어감으로써 패치( Patch ) 형태로 변환되어서
최종적으로 렌더링
되게 됩니다.
이 과정에 대한 자세한 설명은 앞으로도 꾸준히 언급될 것입니다.
지금은 간단하게 이 정도로만 설명하고 넘어가겠습니다.^^



< ID3DXPatchMesh >

그러면 DirectX9 은 어떤 방식으로 테셀레이션 작업을 지원했을까요?
그것은 ID3DXPatchMesh 라는 인터페이스를 통해서 간접적으로 지원했습니다.

참고적으로 얘기드리면, DirectX 에서는 D3DX 라는 유틸리티를 통해서
메시를 관리할 수 있는 클래스를 제공했습니다.
ID3DXBaseMesh, ID3DXMesh, ID3DXSPMesh, ID3DXPMesh,
그리고 마지막으로 언급드렸던 ID3DXPatchMesh 입니다.

ID3DXPatchMesh 인터페이스는 다른 메시들을 지원하는 클래스와 다릅니다. 
일반적인 메시 인터페이스들은 ID3DXBaseMesh와 계층 관계를 이루는 반면에,
ID3DXPatchMesh 는 완전히 별도로 구성된 클래스입니다.
즉, ID3DXPatchMesh 클래스는 IUnknown 인테페이스를 상속받습니다.


ID3DXPatchMesh는 테셀레이션 작업을 위해서 각종 멤버 함수를 가지고 있습니다.
실제로 테셀레이션 작업을 하는 함수는 ID3DXPatchMesh::Tessellate() 와
ID3DXPatchMesh::TessellateAdaptive()
입니다.
이들 함수에 대한 형태는 다음과 같습니다.

HRESULT Tessellate
(
  [in]  FLOAT fTessLevel,
  [in]  LPD3DXMESH pMesh
);

HRESULT TessellateAdaptive
(
  [in]  const D3DXVECTOR4 *pTrans,
  [in]  DWORD dwMaxTessLevel,
  [in]  DWORD dwMinTessLevel,
  [in]  LPD3DXMESH pMesh
);

두 멤버함수 모두 LPD3DXMESH 형태의 테셀레이션 작업이 끝난 메시를 리턴합니다.

이들에 대한 모든 작업은 CPU 가 담당합니다.
또한 연산량도 많기 때문에 Adaptive Tessellation을 처리하기는 상당한 무리가 있습니다.
왜냐하면 Adaptive Tessellation은 시점에 근거해서 매번 폴리곤을 생성해야하기 때문입니다.
ID3DXPatchMesh::Optimize() 라는 최적화 함수를 미리 호출해 줄수도 있지만,
그래도 이는 분명 매우 부담스러운 연산입니다.

< 마치면서... >
이상으로 ID3DXPatchMesh 를 활용한 DirectX9 의 테셀레이션 작업에 대해서 살펴보았습니다.
DirectX9 에서의 테셀레이션 작업의 불편함과 성능 문제를 이해한다면,
DirectX11 에서의 테셀레이션 작업의 우수성을 알 수 있을 것이라 생각됩니다.
다음 시간에도 계속 DirectX9 에서의 테셀레이션 작업에 대해서 살펴보겠습니다.^^
신고
크리에이티브 커먼즈 라이선스
Creative Commons License


 

티스토리 툴바