원래 저번 주에 글을 올릴 예정이었으나 근래에 제 몸 상태와 집 PC 상태가 메롱이 되어버려 한 주 늦게 글을 올립니다(혹시 기다리고 계시는 분이 있었는지 모르겠네요 ^^;;; )



for 문의 병렬화 

이번에는 PPL의 세 개의 알고리즘 중 parallel_for 알고리즘에 대해서 이야기 하겠습니다.

앞 글에서 간단하게 설명했듯이 parallel_for는 그 이름을 보면 유추 할 수 있듯이 for 문을 병렬화 한 알고리즘입니다.

 

아주 많은 횟수로 반복 작업을 해야할 때 하나의 스레드로 처리하는 것보다는 여러 스레드로 동시에 처리하면 훨씬 빨라지는 것은 당연하겠죠? 바로 이 때 사용하면 좋습니다.

하지만 parallel_for 알고리즘은 아무 곳에나 사용할 수는 없습니다. 루프의 반복 계산 사이에 리소스를 공유하지는 않으면서 루프의 본체가 있는 경우 사용하면 편리합니다.

( 앞의 계산 결과를 다음 계산에서 사용해야 된다면 병렬로 실행하기 힘듭니다 )

 

 

parallel-for의 원형

 

두 개의 오버로드 버전이 있습니다.

 

template < typename _Index_type, typename _Function >

_Function parallel_for( _Index_type _First,  _Index_type _Last, _Function _Func );

_Index_type _First : 시작 위치

_Index_type _Last : 마지막 위치

_Function _Func : 병렬 처리로 사용할 함수

 

 

template < typename _Index_type, typename _Function >

_Function parallel_for( _Index_type _First, _Index_type _Last, _Index_type _Step, _Function _Func );

_Index_type _First : 시작 위치

_Index_type _Last : 마지막 위치

_Index_type _Step : 증분 값

_Function _Func : 병렬 처리로 사용할 함수

 

파라미터 값을 보면 for에서 사용하는 것과 비슷하다는 것을 알 수 있을겁니다. 차이점은 첫 번째 버전의 경우 증분 값으로 1이 자동으로 사용된다는 것과 마지막 파리미터로 병렬 처리에 사용할 함수를 사용한다는 것입니다.

 

 

for와 비슷하므로 for를 사용하는 대 부분을 prarallel_for로 변경할 수 있습니다. 다만 parallel_for 알고리즘에서는 반복 변수의 현재 값이 _Last 보다 작으면 중단합니다 ( 보통 for 문과 다르게 ‘<’ 조건만 사용합니다 ).

또 _Index_type 입력 파라미터는 정수형이어야만 합니다.

parallel_for 파라미터가 1보다 작은 경우 invalid_argument_Step 예외를 던집니다.

 


 

초 간단 parallel_for 사용 방법

 

1. 필요한 헤더 파일 포함
  #include <ppl.h>


2.
네임 스페이스 선언

  using namespace Concurrency;

 

3. parallel_for에서 호출할 작업 함수 정의

 

4. parallel_for에서 사용할 data set 정의

 

5. parallel_for 사용

 

 

 그럼 아주 간단한 실제 사용 예제 코드를 볼까요?

 

#include <ppl.h>

#include <iostream>

 

using namespace Concurrency;

using namespace std;

 

 

int main()

{

    int CallNum = 0;

    int Numbers[50] = { 0, };


   
parallel_for( 0, 50-1, [&](
int n ) {

        ++CallNum;

        Numbers[n] += CallNum;

       }               

      );

 

    for( int i = 0; i < 50; ++i )

    {

        cout << i << " : " << Numbers[i] << endl;

    }

 

    getchar();

    return 0;

}


 

위 예제는 Numbers라는 int 형 배열의 각 요소에 CallNum 이라는 변수를 더하는 것입니다. 간단하고 확실하게 parallel_for 사용 방법을 보이기 위해 허접한 예제를 만들게 되었음을 양해 바랍니다.^^;;; ( 다음에 기회가 되면 좀 더 멋지고 실용적인 예제를 보여드리도록 하겠습니다 )

예제에서는 코드를 간략화 하기 위해서 parallel_for의 마지막 파리미터로 람다 식을 사용했습니다.

위 예제를 '초 간단 parallel_for 사용 방법'의 순서에 비추어보면 아래 그림과 같습니다.

 

 


예제를 실행하면 아래와 같은 결과가 나옵니다.

 

(길어서 일부만 캡쳐 했습니다)

 

실행 결과를 보면 Numbers 배열의 각 요소의 값이 순서대로 증가되지 않았다라는 것을 알 수 있습니다. 만약 보통의 for 문이라면 Numbers[0] 1, Numbers[1] 2 라는 값으로 됩니다. 그러나 parallel_for는 병렬적으로 실행되므로 순서가 지켜지지 않습니다. CallNum 라는 변수는 parallel_for의 모든 스레드에서 접근하는 공유 변수이므로 동기화 되지 않았다라는 것도 유의해야 합니다.

 

Parallel_for를 사용할 때 순서대로 실행하지 않고, 공유 변수는 동기화 되지 않음을 잊지마시기를 바랍니다.

 

이것으로 (너무?)간단하게 parallel_for에 대해서 알아 보았습니다. 다음에는 parallel_for_each에 대해서 설명하겠습니다.




수정

1. 덧글의 ivyfore님이 알려주신대로

parallel_for( 0, 50-1, [&]( int n )가 아닌

 parallel_for( 0, 50, [&]( int n ) 가 되어야 합니다.

Parallel Patterns Library(PPL) - 병렬 알고리즘

VC++ 10 Concurrency Runtime 2009. 8. 19. 13:00 Posted by 알 수 없는 사용자

Parallel Patterns Library(이하 PPL)에는 데이터 컬렉션을 대상으로 쉽게 병렬 작업을 할 수 있게 해 주는 알고리즘이 있습니다. 이 알고리즘들은 생소한 것들이 아니고 C++의 표준 템플릿 라이브러리(STL)에서 제공하는 알고리즘과 비슷한 모양과 사용법을 가지고 있습니다.

( *데이터 컬렉션은 데이터 모음으로 배열이나 STL 컨테이너를 생각하면 됩니다 )

 

 

PPL에서 제공하는 병렬 알고리즘은 총 세 개가 있습니다.

 

1. parallel_for        알고리즘

2. parallel_for_each 알고리즘

3. parallel_invoke    알고리즘

 

 

세 개의 알고리즘 중 3 parallel_invoke만 생소하지 1번과 2번은 앞의 ‘parallel_’이라는 글자만 빼면 ‘for’‘for_each’ C++로 프로그래밍할 때 자주 사용하는 것이므로 친숙하게 느껴질 겁니다.

실제 병렬 여부만 제외하면 우리가 알고 있는 것들과 비슷한 동작을 합니다. 그래서 쉽게 배울 수 있고 기존의 코드에 적용하기도 쉽습니다.

 


parallel_for 알고리즘은 일반적인 for문을 사용할 때와 비슷하게 데이터 컬렉션에서 시작할 위치와 마지막 위치, 증가분(생략 가능합니다)에 해야할 작업 함수를 파라미터로 넘기면 됩니다. 사용 방법에서 for문과 다른 점은 작업 함수를 넘긴다는 점입니다.

 

parallel_for_each 알고리즘은 기존 for_each와 거의 같습니다. 데이터 컬렉션에서 시작할 위치, 마지막 위치, 작업 함수를 파라미터로 넘기면 됩니다. parallel_for의 경우 기존의 for문을 사용할 때는 작업 함수를 파라미터로 넘기지 않기 때문에 기존 for 문에 비해서 구조가 달라지지만 parallel_for_each는 기존 for_each와 파라미터 사용 방법이 같기 때문에 알고리즘의 이름만 바꾸면 될 정도입니다.

 

parallel_invoke 알고리즘 이전 회에 설명한 태스크 그룹과 비슷한면이 있습니다. 태스크 그룹과의 큰 차이점은 병렬로 할수 있는 작업은 10개로 제한 되지만 사용 방법은 태스크 그룹보다 더 간결한 점입니다다. 병렬 작업의 개수가 10개 이하인 경우 태스크 그룹보다 parallel_invoke를 사용하는 것이 훨씬 더 적합하다고 생각합니다.

 

 

 

 

이번은 간단하게 PPL에 있는 세 가지 병렬 알고리즘을 소개하는 것으로 마칩니다. 다음 회부터는 이번에 소개했던 세 개의 알고리즘을 하나씩 하나씩 자세하게 설명하겠습니다.

세번째입니다.

관련 디버깅 유틸과 PPL 지원 알고리즘, 이미징 예제 병렬화, 동기화 개체자료구조 등이 소개됩니다.


잘못된 번역이나 부족한 부분 있으면 알려주세요. ^^
안녕하세요, 정재원이라고 합니다.

C++ 관련 글을 올리고 계신 흥배님과 마찬가지로 게임 개발자입니다.

그간 여러분들이 올려주시는 좋은 글들을 읽고만 있다가...; 무언가 올리지 않으면 짤리겠다는 위기감에 소재거리를 뒤져보았습니다;;

흥배님과 가능한한 겹치지 않는 주제와 방식으로 무엇이 적당할까 생각하던 중... 본 동영상을 발견하고는, 그래 여기에 자막을 달아보자! 생각하게 되었습니다. 작년 PDC에서 발표된 Parallel Pattern Library에 대한 동영상입니다.

왠지 간단할듯 여겨졌으나... 처음 해보는 자막 작업 쉽지 않더군요 ㅠㅠ 도구를 찾고 익히는데 시간이 더 들었습니다.

한시간이 넘는 것을 한번에 번역해 올리려면, 날새겠다는 생각이 들더군요; 유투브 업로드가 10분 미만의 동영상으로 제한된다는 것에 안도감(?)을 느꼈습니다...

이를 변명삼아 일단 10분 분량을 올립니다. 포스트 수를 늘리기 위한 수작 아니냐 라는 비난의 소리가 들립니다만... 맞습니다 ㅠㅠ 툴에 좀 더 익숙해지면 자주라도 올리겠습니다.

부족한 번역과 분량에 대해 건설적 충고 부탁드리고요, 기타 제 포스트에 제안 사항 있으시면 댓글 달아주십시오.