.NET에서의 C++/CLI의 의미

C++/CLI 2010. 5. 21. 08:30 Posted by 알 수 없는 사용자

C++/CLI에 대한 기술 아티클이 별로 없는 편입니다. 좀 오래 되었지만 MSDN 매거진 2005 1월에 연재된 'Visual C++ 의 프로그래밍 모델과 컴파일러 최적화를 사용한 어플리케이션의 강화'( http://msdn.microsoft.com/ko-kr/magazine/cc163855%28en-us%29.aspx )라는 글을 통해서 간단하게 정리해 보겠습니다.

이 글을 통해서 C++/CLI의 특징이나 .NET 언어 중에서 어떤 특징을 가지고 있는지 알 수 있습니다.

 

 

 

유연한 프로그래밍 모델

 

C++ C#에 비해 언어적 표현력이나 라이브러리가 부족하다는 단점이 있지만 C#에 비해서 프로그래머가 가질 수 있는 자유도가 무척 높습니다(때로는 이것 때문에 많은 문제를 일으키지만).

C#으로 프로그래밍을 할 때는 무조건 객체 지향 프로그래밍 모델만 사용해야 합니다. 그러나 C++는 절차형 프로그래밍, 객체 지향 프로그래밍, 제너릭 프로그래밍, 메타 프로그래밍 등 프로그래머가 원하는 모델을 선택하여 프로그래밍 할 수 있습니다.

.NET에서 C++/CLI를 사용하면 이런 C++의 장점을 바로 얻을 수 있습니다.

 

 

 

어떤 .NET 언어보다도 뛰어난 성능

 

보통 .NET에서 프로그래밍 할 때 어떤 언어를 사용하나 동일한 성능을 낸다고 생각하지만(즉 언어는 달라도 컴파일 결과로 나오는 MSIL은 동일하다고) 이것은 잘 못된 생각입니다.

C++ 컴파일러 팀은 수년에 걸쳐 네이티브 코드의 최적화로부터 얻었던 지식을 C++/CLI의 최적화에 적용할 수 있도록 많은 노력을 했습니다. 그 결과 다른 .NET 언어보다 최적화된 MSIL를 만들어냅니다.

 

VC++은 어느 컴파일러보다 최상의 최적화를 제공하고 이것은 네이티브 뿐만이 아닌 매니지드 코드에 대해서도 같습니다. VC++ 컴파일러는 네이티브 코드의 모든 최적화 방법을 MSIL에도 적용하여 다른 .NET 언어보다 더 뛰어난 최적화를 할 수 있습니다.

 

.NET에서 가장 최적화된 .NET 코드를 만들어 내는 것은 C++/CLI 입니다.

 

 

 

네이티브 코드와 상호 운용 가능

 

사실 C++/CLI .NET에서 가장 큰 의미를 갖는 것이 바로 이 부분이라고 생각합니다.

.NET의 다른 언어에서 네이티브 코드를 사용하려면 네이티브 코드를 DLL로 만들어서 P/Invoke로 호출해야 합니다. 그러나 C++/CLI는 네이티브 코드와 매니지드 코드를 혼합하여 사용할 수 있습니다. 네이티브 함수로부터 매니지드 함수를 호출하는 경우 특별한 구문을 기술할 필요가 없습니다.

 

네이티브에서 매니지드 호출 또는 매니지드에서 네이티브를 호출하는 경우 서로간의 경계를 넘어가야 하므로 비용이 발생하는데 이런 호출을 최대한 줄여야 성능에 좋습니다. C#의 경우에는 서로간의 호출을 줄여야 하는 경우 인터페이스 변경 등이 필요하나 C++/CLI /clr 스위치를 사용하는 것으로 쉽게 변경할 수 있습니다. 이러한 결과로 네이티브와 매니지드 간의 호출에 발생하는 비용을 최소화 할 수 잇습니다.

 

매니지드 코드와 네이티브 코드의 상호 운용에서 가장 비싼 비용은 마샬링입니다. C#의 경우 P/Invoke를 호출할 때 CLR에 의해서 암묵적으로 마샬링이 실행됩니다. 그러나 C++/CLI는 프로그래머가 필요에 따라서 명시적으로 마샬링을 할 수 있어서 한번 마샬링한 데이터를 복수로 사용할 수 있어서 마샬링에 의한 비용을 줄일 수 있습니다.

 

 

 

.NET 프로그램의 처음 실행 시의 딜레이

 

.NET으로 만든 프로그램과 네이티브로 만든 프로그램의 차이 중의 하나가 .NET으로 만든 프로그램은 처음 실행 시에 CLR을 읽기 위해 딜레이가 발생하는 것입니다. 그러나 C++/CLI는 이런 문제를 회피할 수 있습니다.

VC++에는 DLL 딜레이 로딩 이라는 기능이 있습니다. 링커 옵션에서 /DELAYLOAD:dll에 딜레이 로딩을 할 .NET 어셈블리를 지정하면 네이티브 프로그램과 동일한 정도의 속도록 실행 시킬 수 있습니다.

 

 

 

좀 더 C++/CLI가 다른 .NET 언어보다 좋은 점이 있지만 이것으로 줄이겠습니다.

C++/CLI를 아시는 분들은 언어적 위치의 애매함에 의해서 좋지 않은 인상을 가진 분들이 많으리라 생각하는데 제가 소개한 장점을 통해서 조금이나마 좋은 인상을 얻으셨는지 모르겠네요^^.

 


C++/CLI가 다른 .NET 언어보다 어떤 특징을 가지고 있는지 좀 더 자세하게 알고 싶다면 위에 소개한 MSDN 매거진의 원문(영어)을 보시던가 또는 제가 발 번역한 글을 보시기 바랍니다.

 

Visual C++ 의 프로그래밍 모델과 컴파일러 최적화를 사용한 어플리케이션의 강화

http://jacking75.cafe24.com/MSDN_MagaZine/C++Rule_200501.htm

 

그리고 아래의 글도 참고하시기 바랍니다.

C++/CLI: .NET 프레임워크 프로그래밍을 위한 가장 강력한 언어

http://anyflow.net/entry/CCLI-NET-%ED%94%84%EB%A0%88%EC%9E%84%EC%9B%8C%ED%81%AC-%ED%94%84%EB%A1%9C%EA%B7%B8%EB%9E%98%EB%B0%8D%EC%9D%84-%EC%9C%84%ED%95%9C-%EA%B0%80%EC%9E%A5-%EA%B0%95%EB%A0%A5%ED%95%9C-%EC%96%B8%EC%96%B412


http://anyflow.net/entry/CCLI-NET-%ED%94%84%EB%A0%88%EC%9E%84%EC%9B%8C%ED%81%AC-%ED%94%84%EB%A1%9C%EA%B7%B8%EB%9E%98%EB%B0%8D%EC%9D%84-%EC%9C%84%ED%95%9C-%EA%B0%80%EC%9E%A5-%EA%B0%95%EB%A0%A5%ED%95%9C-%EC%96%B8%EC%96%B422

 

 

C++/CLI 의 설계 원리와 발전 과정

http://msdn.microsoft.com/ko-kr/magazine/cc163484.aspx

C++/CLI는 미운 오리새끼 or 백조

C++/CLI 2010. 5. 11. 08:30 Posted by 알 수 없는 사용자

안녕하세요. 저는 작년에 스터디에 합류하면서 C++0x VC++ 10 Concurrency Runtime에 대해서 글을 적고 강연을 했었습니다. 아직 C++0x Concurrency Runtime에 대한 모든 것을 다 다루지 못했지만 이번에 새로운 멤버들이 합류하여 이 분들이 제가 이전에 맡았던 부분을 맡아서 할 예정이므로 저는 새로운 것을 하려고 합니다.

 

제가 하려는 것은 C++/CLI에 대한 것입니다.

사실 원래 작년부터 저는 C++/CLI을 공부하면서 정리해 보려고 했는데 작년 4월에 스터디에 합류하면서 계속 미루어졌습니다.

 

 

보통 .NET에서 프로그래밍을 한다고 하면 C#으로 프로그래밍 한다고 생각합니다. 그리고 네이티브 프로그래밍을 한다고 하면 C++입니다. 그럼 C++/CLI는 무엇일까요?

 

이름으로 유추 해 볼까요? ‘C++/CLI의 첫 단어는 ‘C++’입니다. ‘C++’ 이라고 하니 딱 네이티브 냄새가 나는군요. 두 번째 단어는 ‘CLI’입니다. C#으로 프로그래밍 하시는 분들은 ‘CLI’가 무엇을 뜻하는지 아시죠? ‘CLI’ .NET의 냄새를 풀풀 풍깁니다. ‘C++/CLI’라는 단어는 네이티브와 .NET의 냄새가 동시에 나지 않나요? 만약 그렇다고 생각하신 분들은 냄새를 잘 맡은 것입니다.^^

 

‘C++/CLI’가 네이티브와 .NET의 냄새를 동시에 풍기듯이 프로그래밍 측면에서도 ‘C++/CLI’는 네이티브와 .NET의 중간 지점에 있는 언어라고 할 수 있습니다.

 

 

 

폭 넓은 또는 이도 저도 아닌 어중간한

 

어떤 영역에서 중간 정도의 위치에 있으면 좋은 말로는 한쪽에 쏠리지 않으면서 양쪽 모든 것을 다 할 수 있다고 들을 수 있지만, 나쁜 말로는 이도 저도 아니라는 말도 들을 수 있습니다.

 

C++/CLI도 그런 것 같습니다.

 

먼저 C++/CLI의 나쁜 점은 .NET 프로그래머와 네이티브 프로그래머 양쪽 모두가 썩 마음에 들어하지 않는 언어라는 것입니다. .NET 프로그래머가 보기에는 이미 C#이라는 좋은 언어가 있어서 다른 언어는 눈에 잘 들어오지도 않고, 네이티브에는 관심이 없는 분들도 많습니다.

 

네이티브 프로그래머에게는 C++라는 걸출한 언어가 있고 일의 특성상 .NET으로는 하기 힘들어서 .NET 프로그래머가 사랑하는 C#도 들어올 공간이 없을 정도입니다. 그런데 C++/CLI를 보니 ‘C++’이라는 단어에 반가움을 가지고 봤더니 C++와 비슷한 것 같으면서 문법이 미묘하게 다른 것이 꽤 마음에 들지 않습니다(C++ 프로그래머가 보기에는 해괴하게 생겼습니다).

 

C#, C++ 어느 하나도 제대로 마스터하기 힘든데 C++/CLI를 제대로 사용하기 위해서는 .NET 프로그래머는 C++을 알아야 하고, C++ 프로그래머는 .NET을 알아야 합니다. 이 바쁜 세상에 하나도 제대로 마스터하기 힘든데 두 개나 알아야 합니다. -__-

 

혹시 여기까지 읽고 “C++/CLI 나쁜 언어군. 이런 잉여 언어라고 생각하고 창을 닫으려고 하는 건 아니겠죠? 조금만 더 기다려 보세요. 이제 좋은 말을 좀 할 테니 이것도 보세요^^

 

그럼 이제 좋은 점을 말해 보겠습니다.

.NET C++(네이티브) 둘 다 각각의 장점을 많이 가지고 있지만 완벽하지는 않습니다.

.NET 프로그래머 입장에서는 아직 세상에는 C++ C로 만들어진 라이브러리가 많고, .NET C++에 비해서 아직은 성능이 낮기 때문에 .NET만으로는 부족한 경우가 있습니다. C++ 프로그래머 입장에서는 요즘 같이 생산성을 추구하는 환경에서 .NET에 비해 낮은 생산성 때문에.NET 환경이 부럽습니다. C++/CLI는 이런.NET 프로그래머와 C++(네이티브) 프로그래머의 아쉬운 부분을 해결해 줄 수 있습니다.

 

물론 C++/CLI를 사용하지 않아도 .NET에서 네이티브 라이브러리를 사용하고, C++ 프로그래머는 .NET으로 만들어진 라이브러리를 사용할 수 있지만 규모가 작지 않은 경우라면 C++/CLI를 사용하는 것보다 까다롭습니다.

 

 

제가 일하고 있는 게임 업계에서는 주력 언어는 C++이고, 예전이나 지금 만들고 있는 대 부분의 라이브러리는 C++을 사용하여 만들고 있습니다. 그러나 게임 개발을 위한 회사에서 사용할 인하우스 툴을 만들 때는 C++만큼의 고 성능을 필요로 하지 않으면서 C++로 만든 라이브러리를 사용하고, 빠르게 개발하고 유지보수가 간편하기를 원하므로 .NET과 네이티브가 결합되기를 바랍니다. 바로 이럴 때가 ‘C++/CLI’가 적격입니다.

 

C++/CLI의 가장 큰 단점은 C# 프로그래머가 보기에도 이상하고, C++ 프로그래머가 보기에도 생김새가 이상해서 흥미를 일으키지 못한다는 점과, C++/CLI를 올바르게 알기 위해서는 .NET C++을 모두 알아야 된다는 점이라고 생각합니다.

그러나 이 단점이라는 부분이 .NET C++ 양쪽 모두를 아는 프로그래머에게는 어느 한쪽만을 아는 프로그래머에 비해 양쪽의 장점을 적절하게 다 가져갈 수 있습니다.

 

.NET이나 C++ 한쪽만을 아는 사람에게는 C++/CLI는 미운 오리새끼이지만 양쪽 모두 아는 사람에게는 백조가 될 수 있습니다.

이 블로그를 통해서 아직까지는 미운 오리새끼로 취급 받고 있는 C++/CLI를 백조가 될 수 있도록 해보겠습니다.

 

 

적다 보니 생각보다 글이 길어졌네요. 첫 글을 너무 쓸데 없이 주절댄 것은 아닌가 모르겠습니다.^^;

 

다음부터는 .NET에서의 C++/CLI의 의미에 대해서 정리하고, C++/CLI에 대한 설명, C++/CLI를 사용한 .NET과 네이티브의 결합, C++/CLI .NET Framework 4 사용 이라는 순서로 글을 올려보겠습니다.

 

 

ps : C++/CLI .NET이 처음 나올 때는 ‘Managed C++’이라는 이름으로 불렸습니다. 그러다가 VS 2005가 나오면서 C++/CLI로 이름이 바뀌었습니다. 또한 문법적인 면에서도 차이가 있습니다.

Visual C++ 10의 변화

Visual C++ 10 2010. 5. 2. 22:08 Posted by 알 수 없는 사용자

영문판 VS 2010(Visual C++ 10)은 나왔고, 한글판은 61일에 나온다고 합니다.

 

Visual C++ 10을 도입하려고 하시는 분들은 전체적으로 어떤 변화가 있는지 알고 싶을 것이고, 특히 구매를 위해 회사 윗 분들에게 보고를 해야 되는 분들은 관련된 문서를 만들어야 하는 분들도 있으리라 생각합니다.

 

VC++ 10 도입이나 내부 스터디에 사용하도록 간단하게 VC++ 10의 달라진 점을 정리하여 문서를 만들어 보았습니다.

 

이 문서는 러프하게 만들어진 문서이니 참고로 사용하여 더 좋은 문서를 만드시기를 바랍니다. 특히 윗 분들에게 보고 하기 위해서 PT문서를 만들 때는 이 문서에 왜 필요한지에 대해서 좀 더 강력한 메시지를 넣기를 바랍니다.^^






"Visual C++ 10과 C++0x" pdf 파일

C++0x 2010. 4. 20. 13:18 Posted by 알 수 없는 사용자

C++0x 관련 책 "Visual C++ 10 C++0x"가 오늘 한국 MSDN 사이트에 올라왔습니다.

e-book으로 보기를 원하는 분이나 책을 얻지 못한 분들은 다운로드 해서 보세요

 

MSDN : http://msdn.microsoft.com/ko-kr/default.aspx


 


Visual Studio의 시작 페이지에도 다운로드 링크가 표시됩니다.

 

 

그리고 책에 오타가 있습니다.

48페이지 decltype 설명에서 오타가 있습니다.




팀블로그에 예전에 RValue Reference lambda 관련 글을 올린 적이 있는데 책을 만들 때 제가 올린 글을 다시 보니 설명에 미흡한 부분이 많아서 RValue Reference lambda는 새로 적었습니다. 그러니 RValue Reference lambda를 공부할 때는 꼭 블로그에 올라와 있는 글보다 이 책의 글을 보시기 바랍니다.


'C++0x' 카테고리의 다른 글

[Plus C++0x] 람다(Lambda) 이야기 (2)  (1) 2010.05.27
[Plus C++0x] 람다(Lambda) 이야기 (1)  (0) 2010.05.27
C++0x 관련 책 "Visual C++ 10과 C++0x"  (9) 2010.04.17
VC++ 10에 구현된 C++0x의 코어 언어 기능들  (1) 2010.04.12
nullptr  (2) 2010.01.28

C++0x 관련 책 "Visual C++ 10과 C++0x"

C++0x 2010. 4. 17. 08:30 Posted by 알 수 없는 사용자

4월 15일에 열린 “C++ 개발자/게임개발자를 위한 VS2010 세미나에서 제가 이때까지 VSTS 2010 팀블로그에 올린 C++0x와 관련된 글을 작은 책으로 만든 것이 마지막에 참석하신 분들에게 배포 되었습니다.

 

원래는 pdf 파일로만 공개될 줄 알았는데 작은 분량이지만 이렇게 책으로 나왔습니다. 생각 이상으로 책 편집도 잘 되었더군요. 책 내용은 팀블로그에 올린 글을 좀 더 다듬었습니다만 RValue Reference lambda는 제가 올린 글이 좋지 못해서 새롭게 적었습니다.

 

제가 글을 아직은 잘 적는 편은 아니라서 글이 매끄럽지 못할 수도 있습니다만 좋게 봐 주시기를 바랍니다.^^;

이 책에 나온 것만 아시면 VC++ 10에 추가된 C++0x의 기능을 사용하기에는 전혀 문제가 없다고 생각합니다. 꼭 도움이 되었으면 합니다.


이번 세미나를 위해 한국에 오신 VC++ 제품의 PM인 Ulzii씨의 싸인도 받았습니다.^^

'C++0x' 카테고리의 다른 글

[Plus C++0x] 람다(Lambda) 이야기 (2)  (1) 2010.05.27
[Plus C++0x] 람다(Lambda) 이야기 (1)  (0) 2010.05.27
"Visual C++ 10과 C++0x" pdf 파일  (4) 2010.04.20
VC++ 10에 구현된 C++0x의 코어 언어 기능들  (1) 2010.04.12
nullptr  (2) 2010.01.28

VC++ 10에 구현된 C++0x의 코어 언어 기능들

C++0x 2010. 4. 12. 08:30 Posted by 알 수 없는 사용자

Visual C++ 팀 블로그에 C++0x Core Language Features In VC10: The Table라는 이름으로 C++0x의 기능 중 코어 언어와 관련된 것 중에서 VC++ 10에 구현된 것들을 테이블 표로 정리되어 있습니다.

GCC C++0x 구현 항목 테이블 표 형식을 차용했다고 하네요.


 

 

위의 테이블 표에서는 C++0x가 처음 구현된 VC++9VC++ 10을 비교하고 있습니다.

 

그리고 글의 마지막에 작년에 Boost Con(Boost 라이브러리 관련 행사)에서 발표한 자료가 첨부 파일로 있습니다. 이 문서를 보면 VC++ 10에서 구현한 C++0x의 코어 언어 기능들을 설명하고 있습니다.

 

문서를 보니 큰 기능들은 제가 작년부터 공부하면서 저희 팀 블로그나 여러 장소에서 설명 하였지만 일부 기능은 저도 미쳐 파악 하지 못한 것들도 있더군요. 앞으로 이런 빠진 부분에 대해서 팀 블로그를 통해서 설명해 드리겠습니다.^^


 

'C++0x' 카테고리의 다른 글

[Plus C++0x] 람다(Lambda) 이야기 (2)  (1) 2010.05.27
[Plus C++0x] 람다(Lambda) 이야기 (1)  (0) 2010.05.27
"Visual C++ 10과 C++0x" pdf 파일  (4) 2010.04.20
C++0x 관련 책 "Visual C++ 10과 C++0x"  (9) 2010.04.17
nullptr  (2) 2010.01.28

nullptr

C++0x 2010. 1. 28. 09:00 Posted by 알 수 없는 사용자

오랜만에 팀 블로그에 C++0x 관련 글을 올립니다.

이미 알고 계시겠지만 Visual Stuido 2010 Beta2에 새로운 C++0x 기능이 추가 되었습니다.

추가된 것은 nullptr 이라는 키워드 입니다.

nullptr C++0x에서 추가된 키워드로 널 포인터(Null Pointer)를 나타냅니다.

 

 

null_ptr이 필요한 이유

 

C++03까지는 널 포인터를 나타내기 위해서는 NULL 매크로나 상수 0을 사용하였습니다.

그러나 NULL 매크로나 상수 0을 사용하여 함수에 인자로 넘기는 경우 int 타입으로 추론되어 버리는 문제가 발생 합니다.

 

< List 1 >

#include <iostream>

 

using namespace std;

 

void func( int a )

{

cout << "func - int " << endl;

}

 

void func( double *p )

{

cout << "func - double * " << endl;

}

 

int main()

{

func( static_cast<double*>(0) );

                 

func( 0 );

  func( NULL );

                 

getchar();

return 0;

}

 

< 결과 >

 


첫 번째 func 호출에서는 double* 로 캐스팅을 해서 의도하는 func이 호출 되었습니다. 그러나 두 번째와 세 번째 func 호출의 경우 func( doube* p ) 함수에 널 포인터로 파라미터로 넘기려고 했는데 의도하지 않게 컴파일러는 int로 추론하여 func( int a )가 호출 되었습니다.

 

바로 이와 같은 문제를 해결하기 위해서 nullptr 이라는 키워드가 생겼습니다.

 

 

 

nullptr 구현안

 

C++0x에서 nullptr의 드래프트 문서를 보면 nullptr은 아래와 같은 형태로 구현 되어 있습니다.

 

const class {

public:

    template <class T>

    operator T*() const

    {

        return 0;

    }

 

    template <class C, class T>

    operator T C::*() const

    {

        return 0;

    }

 

private:

    void operator&() const;

 

} nullptr = {};

 

 

 

nullptr 사용 방법

 

사용방법은 너무 너무 간단합니다. ^^

그냥 예전에 널 포인터로 0 이나 NULL을 사용하던 것을 그대로 대처하면 됩니다.

 

char* p = nullptr;

 

<List1>에서 널 포인트를 파라미터로 넘겨서 func( double* p )가 호출하게 하기 위해서는

func( nullptr );

로 호출하면 됩니다.

 



nullptr의 올바른 사용과 틀린 사용 예

 

 

올바른 사용

char* ch = nullptr; // ch에 널 포인터 대입.

sizeof( nullptr ); // 사용 할 수 있습니다. 참고로 크기는 4 입니다.

typeid( nullptr ); // 사용할 수 있습니다.

throw nullptr; // 사용할 수 있습니다.

 

 

틀린 사용

int n = nullptr; // int에는 숫자만 대입가능한데 nullptr은 클래스이므로 안됩니다.

 

Int n2 = 0

if( n2 == nullptr ); // 에러

 

if( nullptr ); // 에러

 

if( nullptr == 0 ); // 에러

 

nullptr = 0; // 에러

 

nullptr + 2; // 에러

 

 

 

nullptr 너무 간단하죠? ^^

VC++ 10에서는 예전처럼 널 포인터를 나타내기 위해서 0 이나 NULL 매크로를 사용하지 말고 꼭 nullptr을 사용하여 함수나 템플릿에서 널 포인터 추론이 올바르게 되어 C++을 더 효율적으로 사용하기 바랍니다.^^

 

 

 

짜투리 이야기...... ^^


왜 nullptr 이라고 이름을 지었을까?

nullptr을 만들 때 기존의 라이브러리들과 이름 충돌을 최대한 피하기 위해서 구글로 검색을 해보니 nullptr로 검색 결과가 나오는 것이 별로 없어서 nullptr로 했다고 합니다.

제안자 중 한 명인 Herb Sutter은 현재 Microsoft에서 근무하고 있는데 그래서인지 C++/CLI에서는 이미 nullptr 키워드를 지원하고 있습니다.

 

 

C++0x 이야기

근래에 Boost 라이브러리의 thread 라이브러리가 C++0x에 채택 되었다고 합니다. Boost에 있는 많은 라이브러리가 C++0x에 채택되고 있으므로 컴파일러에서 아직 지원하지 않는 C++0x의 기능을 먼저 사용해 보고 싶다면 꼭 Boost 라이브러리를 사용해 보기 바랍니다.

 


 

참고

http://d.hatena.ne.jp/faith_and_brave/20071002/1191322319

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2431.pdf

http://ja.wikibooks.org/wiki/More_C%2B%2B_Idioms/nullptr

http://d.hatena.ne.jp/KZR/20080328/p1

 

 

Parallel Patterns Library(PPL) - concurrent_queue - 2

VC++ 10 Concurrency Runtime 2010. 1. 16. 09:00 Posted by 알 수 없는 사용자

concurrent_queue는 사용 용도가 concurrent_vector 보다 더 많을 것 같아서 좀 더 자세하게 설명하겠습니다.

 

온라인 서버 애플리케이션의 경우 Producer-Consumer 모델이나 이와 비슷한 모델로 네트웍을 통해서 받은 패킷을 처리합니다. 즉 스레드 A는 네트웍을 통해서 패킷을 받으면 Queue에 넣습니다. 그리고 스레드 B Queue에서 패킷을 꺼내와서 처리합니다. 이 때 Queue는 스레드 A B가 같이 사용하므로 공유 객체입니다. 공유 객체이므로 패킷을 넣고 뺄 때 크리티컬섹션과 같은 동기 객체로 동기화를 해야 합니다. 이런 곳에 concurrent_queue를 사용하면 아주 좋습니다.

 

 

concurrent_queue를 사용하기 위한 준비 단계

 

너무 당연하듯이 헤더 파일과 네임스페이스를 선언해야 합니다.

 

헤더파일

#include <concurrent_queue.h>

 

네임스페이스

using namespace Concurrency;

을 선언합니다.

 

이제 사전 준비는 끝났습니다. concurrent_queue를 선언한 후 사용하면 됩니다.

concurrent_queue< int > queue1;

 

 


concurrent_queue에 데이터 추가

 

concurrent_queue에 새로운 데이터를 넣을 때는 push 라는 멤버를 사용합니다.

 

원형

void push( const _Ty& _Src );

 

STL deque push_back과 같은 사용 방법과 기능도 같습니다. 다만 스레스 세이프 하다는 것이 다릅니다. concurrent_queue는 앞 회에서 이야기 했듯이 스레드 세이프한 컨테이너이므로 제약이 있습니다. 그래서 deque 와 다르게 제일 뒤로만 새로운 데이터를 넣을 수 있습니다.

 

concurrent_queue< int > queue1;

queue1.push( 11 );

 

 

 

concurrent_queue에서 데이터 가져오기

 

데이터를 가져올 때는 try_pop 멤버를 사용합니다. 앞의 push의 경우는 STL deque와 비슷했지만 try_pop은 꽤 다릅니다.

 

원형

bool try_pop( _Ty& _Dest );

 

try_pop을 호출 했을 때 concurrent_queue에 데이터가 있다면 true를 반환하고 _Dest에 데이터가 담기며 concurrent_queue에 있는 해당 데이터는 삭제됩니다. 그러나 concurrent_queue에 데이터가 없다면 false를 즉시 반환하고 _Dest에는 호출했을 때의 그대로 됩니다.

 

concurrent_queue< int > queue1;

 

queue1.push( 12 );

queue1.push( 14 );

 

int Value = 0;

 

if( queue1.try_pop( Value ) )

{

           // queue1에서 데이터를 가져왔음

}

else

{

           // queue1은 비어 있었음.

}

 

 

 

concurrent_queue가 비어 있는지 검사

 

concurrent_queue가 비어 있는지 알고 싶을 때는 empty()를 사용합니다. 이것은 STL deque와 같습니다.

 

원형

bool empty() const;

 

비어 있을 때는 true를 반환하고 비어 있지 않을 때는 false를 반환합니다. 다만 empty를 호출할 때 비어 있는지 검사하므로 100% 정확하지 않습니다. 100% 정확하지 않다라는 것은 empty push, try_pop 이 셋은 스레드 세이프하여 동시에 사용될 수 있으므로 empty를 호출할 시점에는 데이터가 있어서 false를 반환했지만 바로 직후에 다른 스레드에서 try_pop으로 삭제를 해버렸다면 empty 호출 후 false를 반환했어 try_pop을 호출했는데 false가 반환 될 수 있습니다.

 

 

 

concurrent_queue에 있는 데이터의 개수를 알고 싶을 때

 

concurrent_queue에 있는 데이터의 개수를 알고 싶을 때는 unsafe_size 멤버를 사용합니다.

 

원형

size_type unsafe_size() const;

 

이것은 이름에서도 알 수 있듯이 스레드 세이프 하지 않습니다. 그래서 unsafe_size를 호출할 때 push try_pop이 호출되면 unsafe_size를 통해서 얻은 결과는 올바르지 않습니다.

 

 


concurrent_queue에 있는 데이터 순차 접근

 

concurrent_queue에 있는 데이터를 모두 순차적으로 접근하고 싶을 때는 unsafe_begin unsafe_end를 사용합니다.

 

원형

iterator unsafe_begin();

const_iterator unsafe_begin() const;

 

iterator unsafe_end();

const_iterator unsafe_end() const;

 

unsafe_begin을 사용하여 선두 위치를 얻고, unsafe_end를 사용하여 마지막 다음 위치(미 사용 영역)를 얻을 수 있습니다. 이것도 이름에 나와 있듯이 스레드 세이프 하지 않습니다.

 

 

 

모든 데이터 삭제


모든 데이터를 삭제할 때는 clear를 사용합니다. 이것은 이름에 unsafe라는 것이 없지만 스레드 세이프 하지 않습니다.

 

원형

template< typename _Ty, class _Ax >

void concurrent_queue<_Ty,_Ax>::clear();

 

 

 

제 글을 보는 분들은 C++을 알고 있다는 가정하고 있기 때문에 STL을 알고 있다고 생각하여 아주 간단하게 concurrent_queue를 설명 하였습니다.

 

concurrent_queue 정말 간단하지 않습니까? 전체적으로 STL deque와 비슷해서 어렵지 않을 것입니다. 다만 스레드 세이프 하지 않은 것들이 있기 때문에 이것들을 사용할 때는 조심해야 된다는 것만 유의하면 됩니다.

 

이것으로 Concurrency Runtime PPL에 대한 설명은 일단락 되었습니다.

이후에는 Concurrency Runtime의 다른 부분을 설명할지 아니면 Beta2에서 새로 추가된 C++0x의 기능이나 또는 이전에 설명한 것들을 더 깊게 설명할지 고민을 한 후 다시 찾아 뵙겠습니다.^^

 

 


참고

Producer-Consumer 모델 : 자바워크님의 http://javawork.egloos.com/2397148

MSDN concurrent_queue :

http://msdn.microsoft.com/en-us/library/dd504906(VS.100).aspx#queue

 

Parallel Patterns Library(PPL) - concurrent_queue - 1

VC++ 10 Concurrency Runtime 2009. 12. 18. 09:00 Posted by 알 수 없는 사용자

concurrent_queuequeue 자료구조와 같이 앞과 뒤에서 접근할 수 있습니다.

concurrent_queue는 스레드 세이프하게 enqueue와 dequeue(queue에 데이터를 넣고 빼는) 조작을 할 수 있습니다.

또 concurrent_queue반복자를 지원하지만 이것은 스레드 세이프 하지 않습니다.

 



concurrent_queuequeue의 차이점


concurrent_queuequeue는 서로 아주 비슷하지만 다음과 같은 다른 점이 있습니다.

( 정확하게는 concurrent_queue와 STL의 deque와의 차이점 이라고 할수 있습니다. )


- concurrent_queue enqueue dequeue 조작이 스레드 세이프 하다.


- concurrent_queue는 반복자를 지원하지만 이것은 스레드 세이프 하지 않다.


- concurrent_queue front pop 함수를 지원하지 않는다.

  대신에 try_pop 함수를 대신해서 사용한다.


- concurrent_queue back 함수를 지원하지 않는다.

  그러므로 마지막 요소를 참조하는 것은 불가능하다.


- concurrent_queue size 메소드 대신 unsafe_size 함수를 지원한다.

  unsafe_size는 이름 그대로 스레드 세이프 하지 않다.


 

 

스레드 세이프한 concurrent_queue의 함수


concurrent_queue에 enqueue 또는 dequeue 하는 모든 조작에 대해서는 스레드 세이프합니다.

 

- empty

- push

- get_allocator

- try_pop

 

empty는 스레드 세이프하지만 empty 호출 후 반환되기 전에 다른 스레드에 의해서 queue가 작아지던가 커지는 경우 이 동작들이 끝난 후에 empty의 결과가 반환됩니다.

 



스레드 세이프 하지 않은 concurrent_queue의 함수

 

- clear

- unsafe_end

- unsafe_begin

- unsafe_size

 

 


반복자 지원

 

앞서 이야기 했듯이 concurrent_queue는 반복자를 지원하지만 이것은 스레드 세이프 하지 않습니다. 그래서 이것은 디버깅 할 때만 사용할 것을 추천합니다.

또 concurrent_queue의 반복자는 오직 앞으로만 순회할 수 있습니다.


concurrent_queue는 아래의 반복자를 지원합니다.

 

- operator++

- operator*

- operator->

 

 

concurrent_queue는 앞서 설명한 concurrent_vector와 같이 스레드 세이프한 컨테이너지만 STL vector deque에는 없는 제약 사항도 있습니다. 우리들이 Vector deque를 스레드 세이프하게 래핑하는 것보다는 Concurrency Runtime에서 제공하는 컨테이너가 성능적으로 더 좋지만 모든 동작이 스레드 세이프하지 않고 지원하지 않는 것도 있으니 조심해서 사용해야 합니다.

 

 

다음에는 일반적인 queue에는 없고 concurrent_queue에서만 새로 생긴 함수에 대해서 좀 더 자세하게 설명하겠습니다.


ps : 앞 주에 Intel의 TBB에 대한 책을 보았습니다. 전체적으로 Concurrency Runtime과 비슷한 부분이 많아서 책을 생각 외로 빨리 볼 수 있었습니다. 제 생각에 TBB나
Concurrency Runtime를 공부하면 다른 하나도 아주 빠르고 쉽게 습득할 수 있을 것 같습니다.

Parallel Patterns Library(PPL) - concurrent_vector - 2

VC++ 10 Concurrency Runtime 2009. 12. 9. 09:00 Posted by 알 수 없는 사용자


concurrent_vector의 주요 멤버

 

자주 사용하는 것들과 STL vector에 없는 것들을 중심으로 추려 보았습니다.

멤버

스레드 세이프

 

at

O

 

begin

O

 

back

O

 

capacity

O

 

empty

O

 

end

O

 

front

O

 

grow_by

O

new

grow_to_at_least

O

new

max_size

O

 

operator[]

O

 

push_back

O

 

rbegin

O

 

rend

O

 

size

O

 

assign

X

 

clear

X

 

reserve

X

 

resize

X

 

shink_to_fit

X

new

 

concurrent_vector는 기존 요소의 값을 변경할 때는 스레드 세이프하지 않습니다. 기존 요소의 값을 변경할 때는 동기화 객체를 사용하여 lock을 걸어야 합니다.

 

 

concurrent_vector 사용 방법

 

concurrent_vector를 사용하기 위해서 먼저 헤더 파일을 포함해야 합니다.

concurrent_vector의 헤더 파일은 “concurrent_vector.h” 입니다.

 

concurrent_vector의 사용 방법은 STL vector를 사용하는 방법과 거의 같습니다. 그러니 STL vector에 없는 것들만 제외하고는 vector를 사용하는 방법을 아는 분들은 따로 공부해야 할 것이 거의 없습니다.

STL vector에 대해서 잘 모르시는 분들은 About STL : C++ STL 프로그래밍(4)-벡터 글을 참고해 주세요.

 


 

concurrent_vector 초 간단 사용 예


concurrent_vector를 사용한 아주 아주 간단한 예제입니다.^^

 

#include <ppl.h>

#include <concurrent_vector.h>

#include <iostream>

 

using namespace Concurrency;

using namespace std;

 

 

int main()

{

           concurrent_vector< int > v1;

           v1.push_back( 11 );

           return 0;

}

 

 


STL vector에는 없는 grow_by, grow_to_at_least 사용 법

 

grow_by vector의 크기를 확장해 줍니다.

예를 들어 현재 vector의 크기가(size()에 의한) 10인데 이것을 20으로 키우고 싶을 때 사용합니다.

 

원형은 아래와 같습니다.

iterator grow_by( size_type _Delta );

iterator grow_by( size_type _Delta, const_reference _Item );

 

grow_to_at_least는 현재 vector의 크기가 10인데 이것이 20보다 작을 때만 20으로 증가시키고 싶을 때 사용합니다.

원형은 아래와 같습니다.

iterator grow_to_at_least( size_type _N );

 

grow_bygrow_to_at_least의 반환 값은 추가된 처음 요소의 위치가 반복자입니다.

 

grow_by의 예제 코드입니다.

void Append ( concurrent_vector<char>& vector, const char* string) {

    size_t n = strlen(string) + 1;

    memcpy( &vector[vector_grow_by(n)], string, n+1 );

}

위 예제는 http://japan.internet.com/developer/20070306/27.html 에서 참고했습니다.

 

 


shink_to_fit


shink_to_fit는 메모리 사용량과 단편화를 최적화 시켜줍니다. 이것은 메모리 재할당을 하기 때문에 요소에 접근하는 모든 반복자가 무효화됩니다.


 

Intel TBB


CPU로 유명한 Intel에서는 멀티코어 CPU를 만들면서 병렬 프로그래밍을 좀 더 쉽고, 안전화고, 확장성 높은 프로그램을 만들 수 있도록 툴과 라이브러리를 만들었습니다.

라이브러리 중 TBB라는 병렬 프로그래밍 용 라이브러리가 있습니다. 아마 TBB를 아시는 분이라면 Concurrent Runtime PPL에 있는 것들이 TBB에 있는 것들과 비슷한 부분이 많다라는 것을 아실 것입니다.

VSTS 2010 Beta2가 나온지 얼마 되지 않아서 병렬 컨테이너에 대한 문서가 거의 없습니다. 그러나 TBB에 관한 문서는 검색을 해보면 적지 않게 찾을 수 있습니다. concurrent_vector에 대해서 좀 더 알고 싶은 분들은 Intel TBB에 대해서 알아보시면 좋을 것 같습니다.

( 참고로 TBB 관련 서적이 한국어로 근래에 출간되었습니다.  http://kangcom.com/sub/view.asp?sku=200911100001 )

 


다음에는 concurrent_queue에 대해서 알아 보겠습니다.


저희 Viva 2010 팀은 차세대 개발 플랫폼인 Visual Studio 2010, Visual Studio Team System 2010, C# 4.0, C++ 0x, Cloud 등을 공부하고 다양한 매체를 통해 알리는 팀 입니다.

저희 VSTS 2010 팀은 최근 Visual Studio 2010 베타 2 공개와 앞으로 곧 나오게 될 RC 및 정식 버전 출시에 발 맞춰서 활동을 더욱 강화하기 위해서 팀 멤버를 추가로 모집하고 있습니다.


그간의 활동

온라인 활동

http://vsts2010.net 블로그를 통해서 총 164개의 Article 발행, 총 방문자 약 50000, 일 평균 300명의 방문


오프라인 활동


[2009년 6월 10일 MSDN 주간 세미나]

강보람 - C#연대기 -C#의 Before/After

공성의 - VSTS2010에서의 소프트웨어 품질 관리

김병진 - VSTS 2010 Architecture & UML

엄준일 - Managed Extensibility Framework

최흥배 - Visual C++ 10, C++0x 그리고 Concurrency Runtime


[TechDays 2009 참여]

김병진, 강성재 - Visual Studio Team System 2010 Overview

최흥배새로운 시대를 여는 Visual C++ 10

강보람C# 4.0 with dynamic : 사랑과 전쟁. 그들의 4주 후…

조진현Multi-threaded rendering in DirectX11

엄준일, 공성의Visual Studio Team System 2010 With Agile

김대욱, 김태균WPF4.0 을 위한 VIsualStudio 2010



활동 영역

온라인 활동 영역

팀 블로그 활동

팀 블로그를 통해 자신의 글을 게시할 수 있습니다. 현재 수백 명의 정기 구독자에게 글이 공개가 되며, 팀 블로그가 구글 등의 검색 상위권에 이르게 됨으로 자신의 글이 상위 검색에 노출되는 간접적인 혜택을 누릴 수 있습니다.

온라인 세미나

한국 마이크로소프트와 팀 자체에서 진행하는 여러 가지 온라인 세미나의 스피커로 활동하게 됩니다.

온라인 커뮤니티(예정)

온라인 커뮤니티 활동과 함께 커뮤니티 운영 활동을 하게 됩니다.

   

오프라인 활동 영역

오프라인 스터디

오프라인 스터디를 통해 자신의 분야를 공부하고 발표합니다. 그리고 좋은 콘텐츠는 곧바로 온라인/오프라인 세미나 스피커 활동으로 이어집니다.

오프라인 세미나

한국 마이크로소프트와 팀 자체에서 진행하는 오프라인 세미나의 스피커로 활동할 수 있습니다. 팀 자체에서는 매월 오프라인 정기 세미나를 진행하며, 자신의 노하우를 오프라인 세미나를 통해 전달할 수 있는 기회를 드립니다.

기고

팀 블로그를 통해 축적된 자신의 콘텐츠는 월간 잡지 등에 기고할 수 있습니다.

책 집필, 번역(예정)

다양한 노하우를 책으로 집필하고, 외국의 유명 서적을 번역하는 활동을 계획하고 있습니다.

Microsoft MVP 추천

MVP 에 되고자 하시는 분은 한국 이크로소프트 직원과 마이크로소프트 MVP 의 추천을 드립니다.

   

모집 분야

  • Cloud Development
  • C#
  • VB.NET
  • C++
  • Agile Development
  • Parallel Development
  • Web Development
  • ASP.NET
  • Silverlight
  • Windows 7 Development
  • RIA Development
  • Architect Development
  • Office Business Application Development
  • .NET Framework 4.0
  • Visual Studio 2010
  • Visual Studio Team System 2010
  • ETC…

   

마감

정해진 마감 일자는 없습니다만, 적어도 12월 중에는 저희와 함께 할 수 있었으면 합니다. 가능한 빨리 지원해주시길 부탁드립니다.

   

지원 방법

아래의 양식을 채워주시고 kkongchi@gmail.com 으로 보내주세요.

이름

  

사진

  

블로그

  

전화번호, 이메일

  

티스토리 아이디

  

소개

(직업 및 회사명 포함)

관심 분야

(중복 가능)

   

지원해 주신 내용에 대한 심사 후, 오프라인 인터뷰를 통해서 멤버를 선정하게 됩니다. 이번에는 특히 활발한 온라인 활동, 특히 개인 블로그 활동을 많이 해오신 분들을 우선적으로 선정할 예정입니다.

   

지원 시 유의 사항

참고로 저희 스터디에서는 배우고자 지원하시는 분들은 선발하지 않습니다. 저희 팀의 스터디에서는 여러분들에게 아무것도 가르쳐주지 않습니다.

저희 팀에서는 절대 실력을 보고 맴버를 선발하지 않습니다. 물론 실력이 출중하면 좋겠지만 새로운 VSTS 2010 분야는 어느 누구도 밟아보지 않은 새로운 황야와 같습니다. 새로운 길을 함께 가실 활동력이 충분하신 분들은 꼭 지원해 주시기 바랍니다. ^^

Parallel Patterns Library(PPL) - concurrent_vector - 1

VC++ 10 Concurrency Runtime 2009. 11. 29. 08:30 Posted by 알 수 없는 사용자

Visual Stuido 2010 Beta2가 나오면서 제가 기대하고 있었던 병렬 컨테이너가 드디어 구현되었습니다.

 

Concurrency Runtime(이하 ConRT)에는 총 3개의 병렬 컨테이너를 제공합니다. Beta2에서는 모두 다 구현되지는 못하고 concurrent_vector concurrent_queue 두 개가 구현되었습니다. 아직 구현되지 않은 것은 concurrent_hash_map 입니다.

 

세 개의 컨테이너들은 C++ STL의 컨테이너 중에서 가장 자주 사용하는 것으로 vector, deque, hash_map 컨테이너의 병렬 버전이라는 것을 이름을 보면 쉽게 알 수 있을 것입니다.

 

STL에 있는 컨테이너와 비슷한 이름을 가진 것처럼 사용 방법도 기존의 컨테이너와 비슷합니다. 다만 병렬 컨테이너 답게 스레드 세이프하며, 기존의 컨테이너에서 제공하는 일부 기능을 지원하지 못하는 제한도 있습니다.

 

 

몇 회에 나누어서 concurrent_vector concurrent_queue에 대해서 설명해 나가겠습니다.

이번에는 첫 번째로 concurrent_vector에 대한 것입니다.

 

 

 

concurrent_vector란?

 

STL vector와 같이 임의 접근이 가능한 시퀀스 컨테이너입니다. concurrent_vector는 멀티 스레드에서 요소를 추가하던가 특정 요소에 접근해도 안전합니다. 반복자의 접근과 순회는 언제나 멀티 스레드에서 안전해야 하므로 요소를 추가할 때는 기존의 인덱스와 반복자를 무효화 시키면 안됩니다.

 

 

concurrent_vector vector의 차이점


기능

vctor

Concurrent_vector

추가

스레드에 안전하지 않음

스레드에 안전

요소에 접근

스레드에 안전하지 않음

스레드에 안전

반복자 접근 및 순회

스레드에 안전하지 않음

스레드에 안전

push_back

가능

가능

insert

가능

불가능

clear

모두 삭제

모두 삭제

erase

가능

불가능

pop_back

가능

불가능

배열식 접근 예. &v[0]+2

가능

불가능

 

 

grow_by, grow_to_at_least (vector resize와 비슷)는 스레드에 안전

 

 

추가 또는 resize 때 기존 인덱스나 반복자의 위치가 바뀌지 않음

 

 

bool 형은 정의 되지 않았음

 


concurrent_vector에 대한 설명을 이번에는 소개 정도로 끝내고 다음부터는 본격적으로 Concurrent_vector을 어떻게 사용하면 되는지 상세하게 설명해 나가겠습니다.^^


task group에서의 병렬 작업 취소 - 1  에 이은 두 번째 글입니다.


3. 작업이 취소되었을 때 해야 할 것


취소는 그것을 호출했을 때 즉시 동작하지 않습니다. task group이 취소되면 런타임은 각 task interruption point를 발동하여 런타임을 throw 시켜서 활동중인 task가 취소될 때 내부 예외 형을 잡을 수 있습니다. Concurrency Runtime은 런타임이 언제 interruption point를 호출할지 정의되어 있지 않습니다. 런타임이 취소를 할 때 던지는 예외를 잡아서 처리할 필요가 있습니다.

그래서 만약 task의 처리 시간이 긴 경우는 정기적으로 취소 여부를 확인할 필요가 있습니다.

 

< 리스트 4. >

auto t5 = make_task([&] {

   // Perform work in a loop.

   for (int i = 0; i < 1000; ++i)

   {

      // To reduce overhead, occasionally check for

      // cancelation.

      if ((i%100) == 0)

      {

         if (tg2.is_canceling())

         {

            wcout << L"The task was canceled." << endl;

            break;

         }

      }

 

      // TODO: Perform work here.

   }

});

 

<리스트 4>의 굵게 표시한 코드는 task5가 정기적으로 task group tg2가 취소 되었는지 조사하고 있는 것입니다.

 

<리스트 4>는 명시적으로 task5가 속한 task group tg2가 취소되었는지 조사하고 있는데 만약 해당 task가 속한 task group을 직접적으로 호출하지 않고 취소 여부를 조사하고 싶을 때는 is_current_task_group_canceling() 을 사용합니다.

 

 

4. 병렬 알고리즘에서의 취소

 

task group에서 사용하는 병렬 알고리즘도 위에서 소개한 방법으로 취소할 수 있습니다.

 

< 리스트 5. Task group에서 병렬 알고리즘 사용 >

structured_task_group tg;

 

task_group_status status = tg.run_and_wait([&] {

   parallel_for(0, 100, [&](int i) {

      // Cancel the task when i is 50.

      if (i == 50)

      {

         tg.cancel();

      }

      else

      {

         // TODO: Perform work here.

      }

   });

});

 

// Print the task group status.

wcout << L"The task group status is: ";

switch (status)

{

case not_complete:

   wcout << L"not complete." << endl;

   break;

case completed:

   wcout << L"completed." << endl;

   break;

case canceled:

   wcout << L"canceled." << endl;

   break;

default:

   wcout << L"unknown." << endl;

   break;

}

 

<리스트 5> task group tg task를 넣을 때 병렬 알고리즘을 넣었습니다. 그리고 이번 beta2에 새로 생긴 run_and_wait 멤버를 사용하여 task의 실행이 끝날 때 까지 대기하도록 했습니다(예전에는 run 이후에 wait를 호출해야 했습니다).


물론 cancel이 아닌 예외를 발생 시켜서 취소 시킬 수도 있습니다.


< 리스트 6. 병렬 알고리즘에서 예외를 발생시켜서 취소 시키기 >

try

{

   parallel_for(0, 100, [&](int i) {

      // Throw an exception to cancel the task when i is 50.

      if (i == 50)

      {

         throw i;

      }

      else

      {

         // TODO: Perform work here.

      }

   });

}

catch (int n)

{

   wcout << L"Caught " << n << endl;

}

 

<리스트 6>은 하나의 task만 예외를 발생시키고 있기 때문에 task group의 모든 task를 취소

시키기 위해서는 모든 task에서 예외를 발생시켜야 합니다.

그래서 아래의 <리스트 7>과 같이 전역 변수 flag를 사용합니다.

 

< 리스트 7. 모든 병렬 알고리즘의 task 취소 시키기 >

bool canceled = false;

 

parallel_for(0, 100, [&](int i) {

   // For illustration, set the flag to cancel the task when i is 50.

   if (i == 50)

   {

      canceled = true;

   }

 

   // Perform work if the task is not canceled.

   if (!canceled)

   {

      // TODO: Perform work here.

   }

});

 

 


5. Parallel 작업을 취소를 사용하지 못하는 경우

 

취소 작업은 모든 상황에서 다 사용할 수 있는 것은 아닙니다. 특정 시나리오에서는 사용하지 못할 수가 있습니다. 예를 들면 어떤 task는 활동중인 다른 task에 의해 block이 풀렸지만 아직 시작하기 전에 task group이 최소되어 버리면 계속 시작하지 못하여 결과적으로 애플리케이션이 dead lock 상황에 빠지게 됩니다.




이것으로 task group에서의 병렬 작업의 취소에 대한 것은 마칩니다. 다음에는 Beta2에 드디어 구현된 Concurrency Container에 대해서 설명하겠숩니다.


참고 url
MSDN : http://msdn.microsoft.com/en-us/library/dd984117(VS.100).aspx

task group을 사용하여 복수의 작업을 병렬적으로 처리할 때 모든 작업이 끝나기 전에 작업을 취소 해야 되는 경우가 있을 것입니다. task group에서 이와 같은 취소 처리를 어떻게 하는지 알아보겠습니다.

 

Concurrency Rumtime에 대한 정보는 아직까지는 MSDN을 통해서 주로 얻을 수 있기 때문에 거의 대부분 MSDN에 있는 것을 제가 좀 더 보기 좋고 쉽게 전달할 수 있도록 각색을 하는 정도이니 이미 MSDN에서 보신 분들은 pass 하셔도 괜찮습니다.^^;

 

 

1. 병렬 작업의 tree

 

PPL task group를 사용하여 병렬 작업을 세분화하여 각 작업을 처리합니다. task group에 다른 task group를 넣으면 이것을 부모와 자식으로 tree 구조로 표현할 수 있습니다.

 

< 리스트 1. >

structured_task_group tg1;

 

auto t1 = make_task([&] {

   structured_task_group tg2;

 

   // Create a child task.

   auto t4 = make_task([&] {

      // TODO: Perform work here.

   });

 

   // Create a child task.

   auto t5 = make_task([&] {

      // TODO: Perform work here.

   });

 

   // Run the child tasks and wait for them to finish.

   tg2.run(t4);

   tg2.run(t5);

   tg2.wait();

});

 

// Create a child task.

auto t2 = make_task([&] {

   // TODO: Perform work here.

});

 

// Create a child task.

auto t3 = make_task([&] {

   // TODO: Perform work here.

});

 

// Run the child tasks and wait for them to finish.

tg1.run(t1);

tg1.run(t2);

tg1.run(t3);

 

<리스트 1>에서는 structured_task_group tg2 tg1에 들어가서 tg2 tg1의 자식이 되었습니다. 이것을 tree 그림으로 표현하면 아래와 같습니다.



< 그림 1. >

 

 

2. 병렬 작업의 취소 방법

 

parallel task를 취소할 때는 task group의 cancel 멤버를 사용하면 됩니다(task_group::cancel, structured_task_group::cancel). 또 다른 방법으로는 task에서 예외를 발생시키는 것입니다. 두 가지 방법 중 cancel 멤버를 사용하는 것이 훨씬 더 효율적입니다.


cancel을 사용하는 것을 top-down 방식으로 task group에 속한 모든 task를 취소시킵니다. 예외를 발생 시켜서 취소하는 방법은 bottom-up 방식으로 task group에 있는 각 task에서 예외를 발생시켜서 위로 전파시킵니다.



2.1. cancel을 사용하여 병렬 작업 취소

 

cancel 멤버는 task group canceled 상태로 설정합니다. cancel 멤버를 호출한 이후부터는 task group task를 처리하지 않습니다. task가 취소되면 task group wait에서는 canceled를 반환합니다.

 

cancel 멤버는 자식 task에서만 영향을 끼칩니다. 예를 들면 <그림 1> t4에서 tg2를 cancel하면 tg2에 속한 t4, t5 task만 취소됩니다. 그러나 tg1을 cancel하면 모든 task가 취소됩니다.

 

structured_task_group은 thread 세이프 하지 않기 때문에 자식 task에서 cancel을 호출하면 어떤 행동을 할지 알 수 없습니다. 자식 task cancel로 부모 task를 취소하던가 is_canceling로 취소 여부를 조사할 수 있습니다.

 

< 리스트 2. cancel을 사용하여 취소 >

auto t4 = make_task([&] {

   // Perform work in a loop.

   for (int i = 0; i < 1000; ++i)

   {

      // Call a function to perform work.

      // If the work function fails, cancel all tasks in the tree.

      bool succeeded = work(i);

      if (!succeeded)

      {

         tg1.cancel();

         break;

      }

   }  

});

 


2.2. 예외를 발생시켜 병렬 작업 취소


앞서 cancel 멤버를 사용하는 것 이외에 예외를 발생시켜서 취소 시킬 수 있다고 했습니다. 그리고 이것은 cancel()을 사용하는 것보다 효율이 좋지 않다고 했습니다.

예외를 발생시켜서 취소하는 방법의 예는 아래의 <리스트 3>의 코드를 보시면 됩니다.

 

< 리스트 3. 예외를 발생시켜서 취소 >

structured_task_group tg2;

 

// Create a child task.     

auto t4 = make_task([&] {

   // Perform work in a loop.

   for (int i = 0; i < 1000; ++i)

   {

      // Call a function to perform work.

      // If the work function fails, throw an exception to

      // cancel the parent task.

      bool succeeded = work(i);

      if (!succeeded)

      {

         throw exception("The task failed");

      }

   }        

});

 

// Create a child task.

auto t5 = make_task([&] {

   // TODO: Perform work here.

});

 

// Run the child tasks.

tg2.run(t4);

tg2.run(t5);

 

// Wait for the tasks to finish. The runtime marshals any exception

// that occurs to the call to wait.

try

{

   tg2.wait();

}

catch (const exception& e)

{

   wcout << e.what() << endl;

}

 

task_group이 structured_task_group wait는 예외가 발생했을 때는 반환 값을 표시하지 못합니다. 그래서 <리스트 3>의 아래 부분에서 try-catch에서 exception을 통해서 상태를 표시하고 있습니다.




아직 이야기가 다 끝난 것이 아닙니다. 나머지는 다음 글을 통해서 설명하겠습니다.^^



참고 url

MSDN : http://msdn.microsoft.com/en-us/library/dd984117(VS.100).aspx


Parallel Patterns Library(PPL) - combinable

VC++ 10 Concurrency Runtime 2009. 10. 28. 08:30 Posted by 알 수 없는 사용자

PPL에서 제공하는 알고리즘을 사용하여 병렬로 작업을 실행할 때 각 작업에서 접근하는 공유 리소스는 스레드 세이프 하지 않기 때문에 lock을 걸어서 공유 리소스를 보호해야 합니다.

 

그러나 lock을 건다는 것은 번거롭기도 하며 성능에 좋지 않은 영향을 미칩니다.

가장 좋은 방법은 공유 리소스에 lock을 걸지 않아도 스레드 세이프한 것이 가장 좋습니다.

 

combinable은 바로 위에 언급한 문제를 해결해 주는 것입니다. 모든 상황에 다 사용할 수 있는 것은 아니지만 특정 상황에서는 combinable을 사용하면 lock을 걸지 않아도 공유 리소스를 스레드 세이프하게 접근 할 수 있습니다.

 

 

combinable

combinable은 병렬로 처리하는 작업에서 각 작업마다 계산을 실행한 후 그 계산 결과를 통합할 때 사용하는 재 사용 가능한 스레드 로컬 스트레지를 제공합니다.

 

combinable은 복수의 스레드 또는 태스크 간에 공유 리소스가 있는 경우에 사용하면 편리합니다. combinable는 공유 리소스의 접근을 각 스레드 별로 제공하여 공유 상태를 제거할 수 있습니다.

 


스레드 로컬 스트리지

스레드 프로그래밍을 공부하시면 스레드 고유의 로컬 스트리지를 만들어서 해당 스레드는 자신의 로컬 스트리지에 읽기,쓰기를 하여 다른 스레드와의 경합을 피하는 방법을 배울 수 있습니다.

combinable은 이 스레드 로컬 스트리지와 비슷한 방법입니다.

 

 

combinable의 메소드 설명

combinable::local : 현재 스레드 컨텍스트와 관련된 로컬 변수의 참조를 얻는다.

combinable::clear : 오브젝트로부터 모든 스레드 로컬 변수를 삭제한다.

combinable::combine : 제공하고 있는 있는 조합 함수를 사용하여 모드 스레드 로컬 계산의 set으로부터 최종적인 값을 만든다.

combinable::combinable_each ; 제공하고 있는 조합 함수를 사용하여 모든 스레드 로컬 계산의 set으로부터 최종적인 값을 만든다.

 

 

combinable은 최종 결합 결과 타입의 파라미터를 가지고 있는 템플릿 클래스입니다. 기본 생성자를 호출하면 기본 생성자와 복사 생성자 _Ty 템플릿 파라미터 형이 꼭 있어야합니다. _Ty 템플릿 파라미터 형이 기본 생성자를 가지지 않는 경우 파라미터로 초기화 함수를 사용하는 생성자로 오버로드 되어 있는 것을 호출합니다.

 

combinable을 사용하여 모든 작업에서 처리한 계산 결과 값을 얻을 때는 combine()을 사용하여 합계를 구하던가, combine_each를 사용하여 각 작업에서 계산한 값을 하나씩 호출하여 계산합니다.

 

< 예제 1. Combinable을 사용하지 않고 lock을 사용할 때 >

……

int TotalItemPrice1 = 0;

critical_section rt;

parallel_for( 1, 10000, [&]( int n ) {

                     rt.lock();

                     TotalItemPrice += n;

                     rt.unlock();

                     }         

);

………


<예제 1>critical_section을 사용하여 TotalItemPrice 변수를 보호하고 있습니다.

그럼 <예제 1> combunable을 사용하여 구현해 보겠습니다.

 

< 예제 2. Combinable 사용 >

#include <ppl.h>

#include <iostream>

 

using namespace Concurrency;

using namespace std;

 

 

int main()

{

           combinable<int> ItemPriceSum;

           parallel_for( 1, 10000, [&]( int n ) {

                                ItemPriceSum.local() += n;

                                }         

                     );

 

           int TotalItemPrice = ItemPriceSum.combine( [](int left, int right) {

                                          return left + right;}

                                );

 

           cout << "TotalItemPrice : " << TotalItemPrice << endl;

          

          

           getchar();

           return 0;

}

 

combinable을 사용하면 <예제 1>과 다르게 lock을 걸지 않아도 되기 때문에 훨씬 성능이 더 좋습니다. 다만 모든 곳에서 사용할 수는 없기 때문에 <예제 2>와 같이 어떤 계산의 최종 결과를 구할 때 등 사용할 수 있는 곳을 잘 찾아서 사용해야 합니다.

 

<예제 2>는 각 태스크에서 계산된 결과를 더하기 위해서 conbinablecombine 멤버를 사용했지만 각 태스크의 결과를 하나씩 순회할 때는 conbinablecombine _each 멤버를 사용합니다.

그리고 저는 <예제 2>에서 int combinable에 사용했지만 int 이외에 유저 정의형이나 STL list와 같은 컨테이너도 사용할 수 있습니다.

 


combinable에서 combine_each() 멤버나 combinable에서 STL list 컨테이너를 사용한 MSDN에 있는 예제는 아래와 같습니다.

#include <ppl.h>

#include <vector>

#include <list>

#include <algorithm>

#include <iostream>

 

using namespace std;

using namespace Concurrency;

 

int main()

{

   // Create a vector object that contains the values 1 through 10.

   vector<int> values(10);

  

   int n = 0;

   generate(values.begin(), values.end(), [&] { return ++n; } );

 

   // Generate the list of odd elements of the vector in parallel

   // by using the parallel_for_each algorithm and a combinable object.

   combinable<list<int>> odds;

   parallel_for_each(values.begin(), values.end(), [&](int n) {

         if (n % 2 == 1)

            odds.local().push_back(n);

       });

 

   // Combine all thread-local elements into the final result.

   list<int> result;

   odds.combine_each([&](list<int>& local) {

           // Merge the local list into the result so that the results

           // are in numerical order.

           local.sort(less<int>());

           result.merge(local, less<int>());

        });

 

   // Print the result.

   cout << "The odd elements of the vector are:";

   for_each(result.begin(), result.end(), [](int n) {

          cout << ' ' << n;

        });

}


Parallel Patterns Library(PPL) - parallel_invoke

VC++ 10 Concurrency Runtime 2009. 10. 20. 08:30 Posted by 알 수 없는 사용자

parallel_invoke는 일련의 태스크를 병렬로 실행할 때 사용합니다. 그리고 모든 태스크가 끝날 때까지 대기합니다. 이 알고리즘은 복수의 독립된 태스크를 실행할 때 유용합니다.

 

일련의 태스크를 병렬로 실행할 때 사용이라는 것을 들었을 때 생각나는 것이 없는가요? 지금까지 제가 올렸던 글을 보셨던 분이라면 parallel task라는 말이 나와야 합니다. ^^

parallel_invoke parallel task와 비슷합니다.

 

 

parallel_invoke parallel task의 다른 점

복수 개의 태스크를 병렬로 실행한다는 것은 둘 다 같지만 아래와 같은 차이점이 있습니다.


 

parallel_invoke

parallel task

편이성

작업 함수만 정의하면 된다.

작업 함수를 만든 후 task handle로 관리해야 한다.

태스크 개수

10개 이하만 가능

제한 없음

모든 태스크의 종료 시 대기

무조건 모든 태스크가 끝날 때까지 대기

Wait를 사용하지 않으면 대기 하지 않는다.



parallel_invoke를 사용할 때

병렬로 실행할 태스크의 개수가 10개 이하이고, 모든 태스크가 종료 할 때까지 대기해도 상관 없는 경우에는 간단하게 사용할 수 있는 parallel_invoke를 사용하는 것이 좋습니다. 하지만 반대로 병렬로 실행할 태스크가 10개를 넘고 모든 태스크의 종료를 대기하지 않아야 할 때는 parallel task를 사용해야 합니다.

 

 

parallel_invoke 사용 방법

parallel_invoke는 병렬로 태스크를 두 개만 실행하는 것에서 10개까지 실행하는 9개의 버전이 있으며 파라미터를 두 개만 사용하는 것에서 10개의 파라미터를 사용하는 것으로 오버로드 되어 있습니다.

각 오버로드된 버전의 파라미터에는 태스크를 정의한 작업 함수를 넘겨야 합니다.

 

 

parallel_invoke 사용 예

아래 예제는 아주 간단한 것으로 게임 프로그램이 처음 실행할 때 각종 파일을 로딩하는 것을 아주 간략화 하여 parallel_invoke를 사용한 예입니다.

 

#include <iostream>

#include <ctime>

#include <windows.h>

#include <concrt.h>

#include <concrtrm.h>

using namespace std;

 

#include <ppl.h>

using namespace Concurrency;

 

// UI 이미지 로딩

void LoadUIImage()

{

           Sleep(1000);

           cout << "Load Complete UI Image" << endl;

}

 

// 텍스쳐 로딩

void LoadTexture()

{

           Sleep(1000);

           cout << "Load Complete Texture" << endl;

}

 

// 폰트 파일 로딩

void LoadFont()

{

           Sleep(1000);

           cout << "Load Complete Font" << endl;

}

 

int main()

{

           parallel_invoke( [] { LoadUIImage(); },

                      [] { LoadTexture(); },

                      [] { LoadFont(); }

                    );

          

           getchar();

           return 0;

}

 

< 실행 결과 >



위 예제를 parallel_invoke를 사용하지 않고 전통적인 방법으로 순서대로 실행했다면 각 작업 함수에서 1초씩 소비하므로 3초가 걸리지만 parallel_invoke를 사용하여 1초만에 끝납니다.

 

그리고 이전에 parallel_for에서도 이야기 했듯이 병렬로 실행할 때는 순서가 지켜지지 않는다는 것을 꼭 유의하시기 바랍니다. 위의 예의 경우도 LoadUIImage()을 첫 번째 파라미터로 넘겼지만 실행 결과를 보면 LoadFont()가 먼저 완료 되었습니다.

 


마지막으로 위의 예제코드에서 parallel_invoke와 관계 있는 부분만 추려볼 테니 확실하게 사용 방법을 외우시기를 바랍니다.^^

 

#include <ppl.h>

using namespace Concurrency;

 

// 태스크 정의

void LoadUIImage()

{

............

}

 

void LoadTexture()

{

............

}

 

void LoadFont()

{

............

}

 

int main()

{

        parallel_invoke( [] { LoadUIImage(); },

                                 [] { LoadTexture(); },

                                 [] { LoadFont(); }

                          );

 

}


C++ STL을 알고 있는 분들은 ‘parallel_for_each’에서 ‘parallel_’만 빼면 남는 ‘for_each’는 본적이 있고 사용해본 경험도 있을 것입니다.

 

parallel_for가 for문을 병렬화 한 알고리즘이라면 parallel_for_each는 STL의 for_each 알고리즘을 병렬화 한 것입니다.

 

STL 컨테이너에 있는 데이터를 처리할 때 for_each를 사용한 것을 쉽게 parallel_for_each로 바꾸어 아주 손 쉽게 병렬화 할 수 있습니다.

 

 

parallel_for_each의 원형

 

template < typename _Input_iterator, typename _Function >

_Function parallel_for_each( _Input_iterator _First,  _Input_iterator _Last,   _Function _Func );

 

_First : 시작 위치

_Last : 마지막 위치

_Func : 병렬 처리에 사용할 함수(함수 객체, 함수, 람다 식)

 

for_each에 대해서 알고 있는 분들은 앞서 소개한 parallel_for 보다 더 쉽다고 느낄 것입니다. 기존의 for_each가 사용하는 파라미터도 같습니다. 기존에 사용했던 for_each parallel_for_each로 바꿀려면 알고리즘 이름만 바꾸어도 됩니다.

 

 

 

초 간단 parallel_for_each 사용 방법

 

1. 필요한 헤더 파일 포함

#include <ppl.h>


2.네임 스페이스 선언

using namespace Concurrency;

 

3. parallel_for_each에서 사용할 함수 정의

 

4. parallel_for_each에서 사용할 STL 컨테이너 정의

 

5. parallel_for_each 사용

 

 

 

parallel_for_each를 사용하는 간단한 예제


#include <iostream>

#include <algorithm>

#include <vector>

using namespace std;

 

#include <ppl.h>

using namespace Concurrency;

 

int main()

{

     vector< int > ItemCdList(10);

     generate( ItemCdList.begin(), ItemCdList.end(), []() -> int {

                                       int n = rand();

                                       return n; }

              );

 

      cout << "for_each" << endl;

      for_each( ItemCdList.begin(), ItemCdList.end(), [] (int n) {

                            cout << "<" << n << ">"; } );

      cout << endl << endl;

 

      cout << "parallel_for_each - 1" << endl;

      parallel_for_each( ItemCdList.begin(), ItemCdList.end(), [] (int n) {

                                    cout << "<" << n << ">"; }

                        );

      cout << endl << endl;

 

      cout << "parallel_for_each - 2" << endl;

      critical_section rt;

      parallel_for_each( ItemCdList.begin(), ItemCdList.end(), [&] (int n) {

                               rt.lock();

                              cout << "<" << n << ">";

                               rt.unlock(); }

                       );

 

      getchar();

      return 0;

}

 


위 예제는 vecter 컨테이너에 램덤으로 10개의 숫자 값을 채운 후 출력하는 것입니다.


for_each paralle_for_each 사용 방법이 이름만 다를 뿐 똑 같습니다.




위 예제를 초 간단 parallel_for_each 사용 방법의 순서에 비추어 보면 아래 그림과 같습니다.

 

 

위 예제의 결과입니다.

 



공유 자원 동기화 문제


parallel_for 때도 잠시 언급했듯이 parallel_for_each는 순서대로 실행하지 않고 병렬로 실행하므로 for_each를 사용한 것과 비교해 보면 출력 순서가 서로 다릅니다.

그리고 특히 문제가 되는 것이 공유 자원을 사용할 때 따로 동기화 시키지 않으면 원하지 않는 결과가 나옵니다.

 



위와 같은 잘못된 결과는 나올 수도 있고 안 나올 수도 있습니다. 즉 타이밍에 의해서 발생하는 것이기 때문입니다. 이것이 병렬 프로그래밍의 어려움 중의 하나인데 에러가 언제나 발생하면 빨리 발견하여 처리할 수 있는데 공유 자원을 동기화 하지 않았을 때 발생하는 문제는 바로 발생할 수도 있고 때로는 여러 번 실행했을 때 간혹 나올 때도 있어서 버그 찾기에 어려움이 있습니다.

 

공유 자원의 동기화가 깨어지는 것을 막기 위해서는 동기화 객체를 사용하면 됩니다. 위 예제에서 두 번째 사용한 parallel_for_each‘critical_section’이라는 동기화 객체를 사용하여 공유 자원을 안전하게 보호하고 있어서 올바르게 값을 출력하고 있습니다.

‘critical_section’에 대해서는 다음 기회에 자세하게 설명하겠습니다.

 

parallel_for_each에 대해서는 이것으로 마무리하고 다음 번에는 parallel_invoke에 대해서 설명하겠습니다.

 


원래 저번 주에 글을 올릴 예정이었으나 근래에 제 몸 상태와 집 PC 상태가 메롱이 되어버려 한 주 늦게 글을 올립니다(혹시 기다리고 계시는 분이 있었는지 모르겠네요 ^^;;; )



for 문의 병렬화 

이번에는 PPL의 세 개의 알고리즘 중 parallel_for 알고리즘에 대해서 이야기 하겠습니다.

앞 글에서 간단하게 설명했듯이 parallel_for는 그 이름을 보면 유추 할 수 있듯이 for 문을 병렬화 한 알고리즘입니다.

 

아주 많은 횟수로 반복 작업을 해야할 때 하나의 스레드로 처리하는 것보다는 여러 스레드로 동시에 처리하면 훨씬 빨라지는 것은 당연하겠죠? 바로 이 때 사용하면 좋습니다.

하지만 parallel_for 알고리즘은 아무 곳에나 사용할 수는 없습니다. 루프의 반복 계산 사이에 리소스를 공유하지는 않으면서 루프의 본체가 있는 경우 사용하면 편리합니다.

( 앞의 계산 결과를 다음 계산에서 사용해야 된다면 병렬로 실행하기 힘듭니다 )

 

 

parallel-for의 원형

 

두 개의 오버로드 버전이 있습니다.

 

template < typename _Index_type, typename _Function >

_Function parallel_for( _Index_type _First,  _Index_type _Last, _Function _Func );

_Index_type _First : 시작 위치

_Index_type _Last : 마지막 위치

_Function _Func : 병렬 처리로 사용할 함수

 

 

template < typename _Index_type, typename _Function >

_Function parallel_for( _Index_type _First, _Index_type _Last, _Index_type _Step, _Function _Func );

_Index_type _First : 시작 위치

_Index_type _Last : 마지막 위치

_Index_type _Step : 증분 값

_Function _Func : 병렬 처리로 사용할 함수

 

파라미터 값을 보면 for에서 사용하는 것과 비슷하다는 것을 알 수 있을겁니다. 차이점은 첫 번째 버전의 경우 증분 값으로 1이 자동으로 사용된다는 것과 마지막 파리미터로 병렬 처리에 사용할 함수를 사용한다는 것입니다.

 

 

for와 비슷하므로 for를 사용하는 대 부분을 prarallel_for로 변경할 수 있습니다. 다만 parallel_for 알고리즘에서는 반복 변수의 현재 값이 _Last 보다 작으면 중단합니다 ( 보통 for 문과 다르게 ‘<’ 조건만 사용합니다 ).

또 _Index_type 입력 파라미터는 정수형이어야만 합니다.

parallel_for 파라미터가 1보다 작은 경우 invalid_argument_Step 예외를 던집니다.

 


 

초 간단 parallel_for 사용 방법

 

1. 필요한 헤더 파일 포함
  #include <ppl.h>


2.
네임 스페이스 선언

  using namespace Concurrency;

 

3. parallel_for에서 호출할 작업 함수 정의

 

4. parallel_for에서 사용할 data set 정의

 

5. parallel_for 사용

 

 

 그럼 아주 간단한 실제 사용 예제 코드를 볼까요?

 

#include <ppl.h>

#include <iostream>

 

using namespace Concurrency;

using namespace std;

 

 

int main()

{

    int CallNum = 0;

    int Numbers[50] = { 0, };


   
parallel_for( 0, 50-1, [&](
int n ) {

        ++CallNum;

        Numbers[n] += CallNum;

       }               

      );

 

    for( int i = 0; i < 50; ++i )

    {

        cout << i << " : " << Numbers[i] << endl;

    }

 

    getchar();

    return 0;

}


 

위 예제는 Numbers라는 int 형 배열의 각 요소에 CallNum 이라는 변수를 더하는 것입니다. 간단하고 확실하게 parallel_for 사용 방법을 보이기 위해 허접한 예제를 만들게 되었음을 양해 바랍니다.^^;;; ( 다음에 기회가 되면 좀 더 멋지고 실용적인 예제를 보여드리도록 하겠습니다 )

예제에서는 코드를 간략화 하기 위해서 parallel_for의 마지막 파리미터로 람다 식을 사용했습니다.

위 예제를 '초 간단 parallel_for 사용 방법'의 순서에 비추어보면 아래 그림과 같습니다.

 

 


예제를 실행하면 아래와 같은 결과가 나옵니다.

 

(길어서 일부만 캡쳐 했습니다)

 

실행 결과를 보면 Numbers 배열의 각 요소의 값이 순서대로 증가되지 않았다라는 것을 알 수 있습니다. 만약 보통의 for 문이라면 Numbers[0] 1, Numbers[1] 2 라는 값으로 됩니다. 그러나 parallel_for는 병렬적으로 실행되므로 순서가 지켜지지 않습니다. CallNum 라는 변수는 parallel_for의 모든 스레드에서 접근하는 공유 변수이므로 동기화 되지 않았다라는 것도 유의해야 합니다.

 

Parallel_for를 사용할 때 순서대로 실행하지 않고, 공유 변수는 동기화 되지 않음을 잊지마시기를 바랍니다.

 

이것으로 (너무?)간단하게 parallel_for에 대해서 알아 보았습니다. 다음에는 parallel_for_each에 대해서 설명하겠습니다.




수정

1. 덧글의 ivyfore님이 알려주신대로

parallel_for( 0, 50-1, [&]( int n )가 아닌

 parallel_for( 0, 50, [&]( int n ) 가 되어야 합니다.

Parallel Patterns Library(PPL) - 병렬 알고리즘

VC++ 10 Concurrency Runtime 2009. 8. 19. 13:00 Posted by 알 수 없는 사용자

Parallel Patterns Library(이하 PPL)에는 데이터 컬렉션을 대상으로 쉽게 병렬 작업을 할 수 있게 해 주는 알고리즘이 있습니다. 이 알고리즘들은 생소한 것들이 아니고 C++의 표준 템플릿 라이브러리(STL)에서 제공하는 알고리즘과 비슷한 모양과 사용법을 가지고 있습니다.

( *데이터 컬렉션은 데이터 모음으로 배열이나 STL 컨테이너를 생각하면 됩니다 )

 

 

PPL에서 제공하는 병렬 알고리즘은 총 세 개가 있습니다.

 

1. parallel_for        알고리즘

2. parallel_for_each 알고리즘

3. parallel_invoke    알고리즘

 

 

세 개의 알고리즘 중 3 parallel_invoke만 생소하지 1번과 2번은 앞의 ‘parallel_’이라는 글자만 빼면 ‘for’‘for_each’ C++로 프로그래밍할 때 자주 사용하는 것이므로 친숙하게 느껴질 겁니다.

실제 병렬 여부만 제외하면 우리가 알고 있는 것들과 비슷한 동작을 합니다. 그래서 쉽게 배울 수 있고 기존의 코드에 적용하기도 쉽습니다.

 


parallel_for 알고리즘은 일반적인 for문을 사용할 때와 비슷하게 데이터 컬렉션에서 시작할 위치와 마지막 위치, 증가분(생략 가능합니다)에 해야할 작업 함수를 파라미터로 넘기면 됩니다. 사용 방법에서 for문과 다른 점은 작업 함수를 넘긴다는 점입니다.

 

parallel_for_each 알고리즘은 기존 for_each와 거의 같습니다. 데이터 컬렉션에서 시작할 위치, 마지막 위치, 작업 함수를 파라미터로 넘기면 됩니다. parallel_for의 경우 기존의 for문을 사용할 때는 작업 함수를 파라미터로 넘기지 않기 때문에 기존 for 문에 비해서 구조가 달라지지만 parallel_for_each는 기존 for_each와 파라미터 사용 방법이 같기 때문에 알고리즘의 이름만 바꾸면 될 정도입니다.

 

parallel_invoke 알고리즘 이전 회에 설명한 태스크 그룹과 비슷한면이 있습니다. 태스크 그룹과의 큰 차이점은 병렬로 할수 있는 작업은 10개로 제한 되지만 사용 방법은 태스크 그룹보다 더 간결한 점입니다다. 병렬 작업의 개수가 10개 이하인 경우 태스크 그룹보다 parallel_invoke를 사용하는 것이 훨씬 더 적합하다고 생각합니다.

 

 

 

 

이번은 간단하게 PPL에 있는 세 가지 병렬 알고리즘을 소개하는 것으로 마칩니다. 다음 회부터는 이번에 소개했던 세 개의 알고리즘을 하나씩 하나씩 자세하게 설명하겠습니다.

Parallel Patterns Library(PPL) - Task

VC++ 10 Concurrency Runtime 2009. 8. 18. 00:27 Posted by 알 수 없는 사용자
이번 글은 길이가 좀 깁니다. 내용은 복잡한 것이 아니니 길다고 중간에 포기하지 마시고 쭉 읽어주세요^^


이전 회에서는 PPL에 대한 개념을 간단하게 설명했고, 이번에는 PPL의 세가지 feature 중 태스크(Task)에 대해서 설명하려고 합니다. 태스크에 대한 설명은 이미 이전에 정재원님께서 블로그를 통해서 설명한 적이 있습니다. 정재원님의 글은 태스크 사용 예제 코드를 중심으로 설명한 것으로 저는 그 글에서 빠진 부분과 기초적인 부분을 좀 더 설명하려고 합니다.

 

태스크라는 것은 작업 단위라고 생각하면 좋을 것 같습니다. 작업이라는 것은 여러 가지가 될 수 있습니다. 피보나치 수 계산, 배열에 있는 숫자 더하기, 그림 파일 크기 변경 등 작고 큰 작업이 있습니다. 보통 크기가 큰 작업은 이것을 작은 작업 단위로 나누어 병렬 처리를 하기도 합니다.

 

PPL의 태스크는 작업을 그룹 단위로 묶어서 병렬로 처리하고 대기 및 취소를 할 수 있습니다.

 

 


태스크 핸들

태스크 핸들은 각각의 태스크 항목을 가리키며 PPL에서는 task_handle 클래스를 사용합니다. 이 클래스는 람다 함수 또는 함수 오브젝트 등을 태스크를 실행하는 코드로 캡슐화 합니다. 태스크 핸들은 캡슐화 된 태스크 함수의 유효 기간을 관리하기 때문에 중요합니다. 예를들면 태스크 그룹에 태스크 핸들을 넘길 때는 태스크 그룹이 완료 될때까지 유효해야합니다.


보통 태스크 관련 예제 코드를 보면 task_handle 대신 C++0x의 auto를 사용하는 편이 코드가 더 간결해지므로 task_handle 보다는 auto를 사용하고 있습니다.


 

 

unstructured structured Task Groups

태스크 그룹은 unstructured structured 두 개로 나누어집니다.

두개의 태스크 그룹의 차이는 스레드 세이프하냐 안하느냐의 차이입니다.

unstructured는 스레드 세이프 하고 structured는 스레드 세이프 하지 않습니다.


태스크 관련 예제에 자주 나오는 task_group 클래스는 unstructured 태스크 그룹이고, structured_task_group 클래스는 structured 태스크 그룹을 뜻합니다.

 

unstructured 태스크 그룹은 structured 태스크 그룹보다 유연합니다. 스레드 세이프 하며 작업 중 taks_group::wait를 호출하여 대기한 후 태스크를 추가한 후 실행할 수 있습니다. 그렇지만 성능면에서 structured 태스크 그룹이 스레드 세이프 하지 않으므로 unstructured 태스크 그룹보다 훨씬 더 좋으므로 적절하게 선택해서 사용해야 합니다.

 

structured 작업 그룹은 스레드 세이프 하지 않기 때문에 Concurrency Runtime에서는 몇가지 제한이 있습니다.

- structured 작업 그룹 안에 다른 structured 작업 그룹이 있을 경우 내부의 작업 그룹은 외부의 작업 그룹보다 먼저 완료해야 한다.

- structured_task_group::wait 멤버를 호출한 후에는 다른 작업을 추가한 후 실행할 수 없다.


 

 

초간단!!! 6단계로 끝내는 태스크 사용 방법


1. ppl.h 파일을 포함합니다.

   #include <ppl.h>

 

2. Concurrency Runtime의 네임 스페이를 선언합니다.

   using namespace Concurrency;

 

3. 태스크 그룹을 정의합니다.

  structured_task_group structured_tasks;

 

4. 태스크를 정의합니다.

  auto structured_task1 = make_task([&] { Plus(arraynum1, true); } );

 

5. 태스크를 태스크 그룹에 추가한 후 실행합니다.

  structured_tasks.run( structured_task1 );

 

6. 태스크 그룹에 있는 태스크가 완료될 때까지 기다립니다.

  structured_tasks.wait();

 

위의 순서대로 하면 태스크를 사용할 수 있습니다. 태스크 사용 참 쉽죠잉~ ^^.

참고로 여러 개의 태스크를 그룹에 추가하고 싶다면 6번 이전에 4번과 5번을 추가할 개수만큼 반복하면 됩니다.


* 4번의 Plus(arraynum1, true);는 하나의 태스크에서 실행할 함수입니다.

 


PPL의 태스크를 사용하면 병렬 프로그래밍을 간단한 6단계만으로 끝낼 수 있습니다. 만약 현재의 Win32 API로 이것을 구현하기 위해서는 학습에 많은 시간을 보낸 후 저수준의 API를 사용하여 구현해야 되기 때문에 구현 시간과 안정성에서 PPL의 태스크보다 손해를 봅니다.




태스크 그룹과 스레드 세이프

unstructured structured 태스크 그룹의 차이가 스레드 세이프 유무의 차이라고 했는데 이 말은

unstructured 태스크 그룹은 복수의 스레드에서 호출 및 대기를 할 수 있지만 structured 태스크 그룹은 그것을 생성한 스레드에서만 호출 및 대기를 할 수 있습니다.


예를 들면 스레드 A, 스레드 B가 있는 경우 스레드 A와 B에서 태스크를 실행 후 대기를 한다면 unstructured 태스크 그룹을 사용해야하고, 오직 하나의 스레드에서만(스레드 A에서만) 태스크를 실행 후 대기를 한다면 structured 태스크 그룹을 사용합니다.


스레드 세이프는 스레드 세이프 하지 않는 것보다 오버헤드가 발생합니다. 즉 스레드 세이프 버전은 스레드 세이프 하지 않은 버전보다 성능이 떨어진다는 것이죠.

그러니 태스크 그룹을 어떤 방식으로 사용할지 파악 후 스레드 세이프 필요성에 따라서 unstructured 태스크 그룹과 structured 태스크 그룹 중 상황에 알맞은 것을 선택해서 사용해야 합니다.




ps : 제가 8월 14일 글을 공개할 때 태스크 그룹의 스레드 세이프 특성을 잘 못 이해하여 잘못된 내용을 전달하였습니다. 그래서 오늘 글을 다시 수정하였습니다. ;;;;;;

다음부터는 틀린 글을 올리지 않도록 조심하겠습니다. ^^;;;;;;