이 글은 MSDN 글, "Solving The Dining Philosophers Problem With Asynchronous Agents"를 참고하여 작성되었습니다.

오늘은 AAL(Asynchronous Agents Library)의 액터기반프로그래밍을 사용하여, 동기화 개체들로는 해법이 상당히 골치아프기로 유명한 "철학자들의 식사(Dining Philosophers) 문제"를 풀어보겠습니다. 내용이 길어질듯 하여 3회의 연재글로 구성하려 합니다.

먼저 간단히 철학자들의 식사 문제를 소개하면,


간단히 위 그림과 같은 상황입니다. 철학자 다섯명이 식사를 하는데 젓가락(그림에는 포크지만 상관없습니다;)이 보시는바와 같이 역시 다섯개뿐입니다. 그들은 철학자답게 생각하다가 한입 먹다가를 반복합니다. 한입 먹으려면 젓가락 한쌍이 필요해서 옆사람이 사이에 놓인 젓가락을 이미 선점해 먹고 있다면 기다려야 하는 것이죠. 공유 상태를 고려하지 않고 구현하면 데드락 등으로 철학자가 굶는(starvation) 상황이 발생할 수 있습니다. 이 문제는 저명한 컴퓨터과학자 다익스트라가 처음 제시하였습니다. 모니터 등의 동기화 개체를 사용하여 해결하는 방법이 기존에 많이 설명되어 있습니다만... 솔직히 이해하기가 쉽지 않고 구현도 어렵습니다.

이때 AAL이 제공하는 액터모형을 이용하면 그러한 난해함이나 복잡함 없이 이 문제를 해결할 수 있습니다. 액터모형은 독립적으로 동작하며 서로간에는 오로지 메시지만으로 소통하는(즉, 공유 상태를 가지지 않는) 액터들로 시스템을 모델링하는 방법이라 하겠습니다.

본 예제에서는 철학자를 액터(AAL 용어로는 에이전트)로 보고 메시지 전달을 위해 AAL에서 제공하는 몇몇 메시지 블록(message block)들을 사용하여 철학자들의 식사 문제를 해결합니다.

다음과 같은 다섯 클래스들을 작성하게 됩니다.

  • Chopstick 클래스
  • 식탁 위의 젓가락을 실제 소유하며 요청에 따라 철학자에게 제공하는 역할을 하는 ChopstickProvider 
  • 생각하고 먹는 에이전트 역할의 Philosopher 클래스. 이 클래스는 한쌍의 ChopstickProvider와만 소통합니다.
  • 생각하고 먹는 상태를 나타내는 PhilosopherState 열거형
  • 젓가락들과 철학자들이 배치될 Table 클래스

이 과정에서 다음과 같은 AAL의 클래스 및 함수들을 이용합니다.
  • Concurrency::agent - 에이전트 기반 클래스
  • 이하는 메시지 블록에 속하는 여러 타입들
    • Concurrency::unbounded_buffer
    • Concurrency::overwrite_buffer
    • Concurrency::join
    • Concurrency::call
  • 이상의 메시지 블록들에 메시지를 주고 받는데 사용하는 함수들
    • Concurrency::send
    • Concurrency::asend - 위의 비동기 버전으로, 받음 여부를 확인하지 않고 바로 리턴
    • Concurrency::receive

본격적인 구현 과정은 다음 회에 계속됩니다~ ^^

원래 저번 주에 글을 올릴 예정이었으나 근래에 제 몸 상태와 집 PC 상태가 메롱이 되어버려 한 주 늦게 글을 올립니다(혹시 기다리고 계시는 분이 있었는지 모르겠네요 ^^;;; )



for 문의 병렬화 

이번에는 PPL의 세 개의 알고리즘 중 parallel_for 알고리즘에 대해서 이야기 하겠습니다.

앞 글에서 간단하게 설명했듯이 parallel_for는 그 이름을 보면 유추 할 수 있듯이 for 문을 병렬화 한 알고리즘입니다.

 

아주 많은 횟수로 반복 작업을 해야할 때 하나의 스레드로 처리하는 것보다는 여러 스레드로 동시에 처리하면 훨씬 빨라지는 것은 당연하겠죠? 바로 이 때 사용하면 좋습니다.

하지만 parallel_for 알고리즘은 아무 곳에나 사용할 수는 없습니다. 루프의 반복 계산 사이에 리소스를 공유하지는 않으면서 루프의 본체가 있는 경우 사용하면 편리합니다.

( 앞의 계산 결과를 다음 계산에서 사용해야 된다면 병렬로 실행하기 힘듭니다 )

 

 

parallel-for의 원형

 

두 개의 오버로드 버전이 있습니다.

 

template < typename _Index_type, typename _Function >

_Function parallel_for( _Index_type _First,  _Index_type _Last, _Function _Func );

_Index_type _First : 시작 위치

_Index_type _Last : 마지막 위치

_Function _Func : 병렬 처리로 사용할 함수

 

 

template < typename _Index_type, typename _Function >

_Function parallel_for( _Index_type _First, _Index_type _Last, _Index_type _Step, _Function _Func );

_Index_type _First : 시작 위치

_Index_type _Last : 마지막 위치

_Index_type _Step : 증분 값

_Function _Func : 병렬 처리로 사용할 함수

 

파라미터 값을 보면 for에서 사용하는 것과 비슷하다는 것을 알 수 있을겁니다. 차이점은 첫 번째 버전의 경우 증분 값으로 1이 자동으로 사용된다는 것과 마지막 파리미터로 병렬 처리에 사용할 함수를 사용한다는 것입니다.

 

 

for와 비슷하므로 for를 사용하는 대 부분을 prarallel_for로 변경할 수 있습니다. 다만 parallel_for 알고리즘에서는 반복 변수의 현재 값이 _Last 보다 작으면 중단합니다 ( 보통 for 문과 다르게 ‘<’ 조건만 사용합니다 ).

또 _Index_type 입력 파라미터는 정수형이어야만 합니다.

parallel_for 파라미터가 1보다 작은 경우 invalid_argument_Step 예외를 던집니다.

 


 

초 간단 parallel_for 사용 방법

 

1. 필요한 헤더 파일 포함
  #include <ppl.h>


2.
네임 스페이스 선언

  using namespace Concurrency;

 

3. parallel_for에서 호출할 작업 함수 정의

 

4. parallel_for에서 사용할 data set 정의

 

5. parallel_for 사용

 

 

 그럼 아주 간단한 실제 사용 예제 코드를 볼까요?

 

#include <ppl.h>

#include <iostream>

 

using namespace Concurrency;

using namespace std;

 

 

int main()

{

    int CallNum = 0;

    int Numbers[50] = { 0, };


   
parallel_for( 0, 50-1, [&](
int n ) {

        ++CallNum;

        Numbers[n] += CallNum;

       }               

      );

 

    for( int i = 0; i < 50; ++i )

    {

        cout << i << " : " << Numbers[i] << endl;

    }

 

    getchar();

    return 0;

}


 

위 예제는 Numbers라는 int 형 배열의 각 요소에 CallNum 이라는 변수를 더하는 것입니다. 간단하고 확실하게 parallel_for 사용 방법을 보이기 위해 허접한 예제를 만들게 되었음을 양해 바랍니다.^^;;; ( 다음에 기회가 되면 좀 더 멋지고 실용적인 예제를 보여드리도록 하겠습니다 )

예제에서는 코드를 간략화 하기 위해서 parallel_for의 마지막 파리미터로 람다 식을 사용했습니다.

위 예제를 '초 간단 parallel_for 사용 방법'의 순서에 비추어보면 아래 그림과 같습니다.

 

 


예제를 실행하면 아래와 같은 결과가 나옵니다.

 

(길어서 일부만 캡쳐 했습니다)

 

실행 결과를 보면 Numbers 배열의 각 요소의 값이 순서대로 증가되지 않았다라는 것을 알 수 있습니다. 만약 보통의 for 문이라면 Numbers[0] 1, Numbers[1] 2 라는 값으로 됩니다. 그러나 parallel_for는 병렬적으로 실행되므로 순서가 지켜지지 않습니다. CallNum 라는 변수는 parallel_for의 모든 스레드에서 접근하는 공유 변수이므로 동기화 되지 않았다라는 것도 유의해야 합니다.

 

Parallel_for를 사용할 때 순서대로 실행하지 않고, 공유 변수는 동기화 되지 않음을 잊지마시기를 바랍니다.

 

이것으로 (너무?)간단하게 parallel_for에 대해서 알아 보았습니다. 다음에는 parallel_for_each에 대해서 설명하겠습니다.




수정

1. 덧글의 ivyfore님이 알려주신대로

parallel_for( 0, 50-1, [&]( int n )가 아닌

 parallel_for( 0, 50, [&]( int n ) 가 되어야 합니다.

Welcome to Dynamic C#(5) - Return to Dynamic.

C# 2009. 8. 26. 15:02 Posted by 알 수 없는 사용자

- 그때 너 너무 대충하더라

제가 맨 처음 dynamic에 대한 포스트로 Welcome to Dynamic시리즈를 시작했는데요. 뭐랄까 너무 추상적인 내용위주로 진행했다는 생각이 들더군요. 그리고 공부를 더 하다보니 그런 생각이 더 확실해지더군요. 없는 input에서 output이 나올수는 없는거니 당연한 이야기 겠지요. 캬캬캬. 앞으로는 dynamic과 DLR에 대해서 이야기를 조금 진행해보려고 합니다. 그래봤자 여전히 별 내용없거나 다른분들이 주는 insight를 그대로 전해주는 역할 이상은 못할지도 모르지만 일단 늘 그래왔듯이 노력해보겠습니다. 따쓰한 피드백을. ㅋㅋㅋㅋ


- dynamic?

dynamic d = ....;
d.Foo();

여기서 지역변수인 d는 dynamic타입을 가집니다. dynamic은 엄연히 컴파일러가 지원하는 타입이고, 타입이름이 들어갈 수 있는 곳에는 어디든지 dynamic이라고 명시해줄 수 있습니다. 즉, 실제타입이 동적으로 결정되는 것을 의미하는 정적인 타입인거죠. 차이점이라고 한다면, Foo라는 메서드를 호출하는 IL코드를 바로 만든다기 보다는 DLR과 C# 런타임 바인더를 통해서 dynamic call site라는 걸 호출되는 지점에서 생성합니다. 

이런 기능을 통해서 여러분이 기존에 써오던 친숙한 방법과 모습으로 파이썬이나 루비, 혹은 "스스로 어떻게 실행해야 하는지 알고있는" 객체들을 사용할 수 있게 해줍니다. 개인적으로는 이 부분이 꽤나 중요한 부분이라고 생각합니다. 다른 동적언어들이 있는데, 굳이 C#에 이런 기능이 들어가는건 앤더스 헬스버그의 철학답게, 기존에 잘 사용해오던 언어에 새로운 기능을 잘 통합시켜서 한 부분에만 특화된 언어보다 기존의 언어에서도 새로운 기능을 사용할 수 있게 해주는 거겠죠. 그래서 기존에 잘 사용해오던 언어가 새로운 요구에 발맞추는 새로운 표현법을 계속해서 잘 통합시켜 나가면서 생명력을 유지할 수 있게 말이죠.

위에서 말씀드렸듯이 dynamic은 분명히 존재하는 타입이고 컴파일러도 잘 알아듣는 타입이지만, 현재까지의 모습으로 봤을땐 실제로는 존재하지 않는 타입입니다. DLR과의 연동을 통해서 가능한 동적인 프로그래밍을 문법적으로 편리하게 만들어주는 syntatic sugar같은 역할이라고 볼 수 있을까요? 일단 아래코드를 보시져.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Reflection;

namespace ConsoleApplication2
{
    class Program
    {
        public dynamic DynamicCall(dynamic d)
        {
            object obj = 5;
            return d.Foo();
        }

        static void Main(string[] args)
        {           
        }
    }
}


그리고 이 코드에서 타입위에 마우스를 가져가 보시져. object와 dynamic을 비교해보겠습니다.




object위에 마우스를 올렸을때는 "class System.Object"라고 나오는데, dynamic에는 그런 표시가 없죠? 그럼 우리의 심증을 물증으로 굳혀보겠습니다. 위의 코드를 컴파일한 코드를 리플렉터에서 보면 아래와 같습니다.

----- 리스트 1 -----

[return: Dynamic]
public object DynamicCall([Dynamic] object d)
{
    if (<DynamicCall>o__SiteContainer0.<>p__Site1 == null)
    {
        <DynamicCall>o__SiteContainer0.<>p__Site1 =
            CallSite<Func<CallSite, object, object>>.Create(
                new CSharpInvokeMemberBinder(
                    CSharpCallFlags.None, "Foo", typeof(Program), null,
                    new CSharpArgumentInfo[] {
                        new CSharpArgumentInfo(CSharpArgumentInfoFlags.None, null) }));
    }

    return <DynamicCall>o__SiteContainer0.
                    <>p__Site1.Target(<DynamicCall>o__SiteContainer0.<>p__Site1, d);
}

dynamic이라는 타입은 싹 사라지고 object만 덩그러니 있는걸 확인할 수 있습니다. 그리고 dynamic이라고 알려주는 지시자같은게 붙어있는걸 보실 수 있습니다. 즉 beta1기준으로 현재에는 dynamic은 엄연히 하나의 타입이지만, 닷넷 프레임워크 내부적으로는 dynamic이라는 타입이 존재하지 않는다는 말입니다. 즉, 저렇게 dynamic이라고 표시가 된 객체는 컴파일러가 런타임에게 동적으로 처리되어야 한다는 걸 알려주는게 되겠죠.

그리고 위에서 말씀드렸듯이 컴파일러는 dynamic과 관계된 연산을 만나게 되면, DLR을 통해서 DLR의 call site를 이용하는 코드를 생성합니다. 코드에 보시면 'SiteContainer', 'CallSite'같은게 보이시죠? DLR에 기반한 동적언어에서 어떤 동적 연산을 호출하면 그 코드는 DLR이 이해할 수 있는 기본적인 연산으로 번역되고, 그 기본적인 연산을 적용할 대상에 따라서 Python객체에 하려면 Python Binder로, 기본적인 .NET 객체에는 Object Binder로, C#은 C#런타임 바인더로 적용하게 됩니다. 그 기본적인 연산의 목록은 현재 아래와 같습니다.

----- 리스트 2 -----

namespace System.Dynamic
{
    public class DynamicObject : IDynamicMetaObjectProvider
    {
        protected DynamicObject();

        public virtual IEnumerable<string> GetDynamicMemberNames();

        public virtual DynamicMetaObject GetMetaObject(Expression parameter);

        public virtual bool TryBinaryOperation(BinaryOperationBinder binder, object arg, out object result);

        public virtual bool TryConvert(ConvertBinder binder, out object result);

        public virtual bool TryCreateInstance(CreateInstanceBinder binder, object[] args, out object result);

        public virtual bool TryDeleteIndex(DeleteIndexBinder binder, object[] indexes);

        public virtual bool TryDeleteMember(DeleteMemberBinder binder);

        public virtual bool TryGetIndex(GetIndexBinder binder, object[] indexes, out object result);

        public virtual bool TryGetMember(GetMemberBinder binder, out object result);

        public virtual bool TryInvoke(InvokeBinder binder, object[] args, out object result);

        public virtual bool TryInvokeMember(InvokeMemberBinder binder, object[] args, out object result);

        public virtual bool TrySetIndex(SetIndexBinder binder, object[] indexes, object value);

        public virtual bool TrySetMember(SetMemberBinder binder, object value);

        public virtual bool TryUnaryOperation(UnaryOperationBinder binder, out object result);
    }
}


위의 목록에서 보시면 TryInvokeMember메서드가 있고 인자로는 InvokeMemberBinder를 받는게 보이시져? 그리고 위의 리플렉터에서 뽑은 리스트1을 보시면, Create메서드의 인자로 CSharpInvokeMemberBinder를 생성하고 있습니다. 그리고 CSharpInvokeMemberBinder를 따라가보면, base클래스가 InvokeMemberBinder가 나옵니다. 즉, DLR이 이해할 수 있는 기본연산이 C# 바인더를 통해서 실행되고 있을음 유추해볼 수 있습니다.

그리고 리스트1에서 "<>p_Site1" 이라는 걸 따라가보면 선언이 아래와 같습니다.

public static CallSite<Func<CallSite, object, object>> <>p__Site1;

즉, static 필드인데요. 델리게이트도 담고 있습니다. 이게 Foo메서드 호출에 대한 dynamic call site를 가지고 있는 필드입니다. 위의 리스트1의 코드를 보시면, 이 <>p_Site1에 저장된 내용을 Target메서드를 통해서 호출하고 있는 모습을 보실 수 있습니다. 생긴게 좀 복잡하긴 한데요, 이걸 뭐 직접 짜야하는건 아니고 컴파일러가 작업해주는 거니까요. 이 이야기는 나중에 더 자세하게 다루도록 하구요. 일단 dynamic이 어디에 어떤 모습으로 쓰일 수 있고, 그게 뭘 의미하는지 더 알아보도록 하겠습니다. 우선, 아래의 코드를 보시져. 

dynamic d = ...;

d.Foo(1, 2, 3); // (1)

d.Prop = 10; // (2)

var x = d + 10; // (3)

int y = d; // (4)

string y = (string)d; // (5)

Console.WriteLine(d); // (6)
(d.Foo(); 에서 d는 Foo의 실행요청을 받는 receiver이고, d의 타입이 dynamic이라면 d는 dynamic receiver가 되는거임!)

1. Foo메서드의 호출요청을 받은 객체의 타입이 dynamic이므로 컴파일러는 런타임에게 이 코드에서 d의 실제 runtime type이 뭐든지에 상관없이 "Foo"라는 메서드를 매개변수{1, 2, 3}를 적용해서 바인드해야 한다는걸 알려줍니다.

2. 역시 1번과 마찬가지로 dynamic receiver가 있으므로 컴파일러는 런타임에게 이 코드에서는 "Prop"이라는 프로퍼티비스무리한(필드나 프로퍼티)걸 바인드해야 하고 거기에 10이라는 값을 할당해야 한다고 알려줍니다.

3. 여기서는 +연산자는 동적으로 바인드되는 연산인데요, 매개변수중에 하나가 dynamic이기 때문이죠. 런타임은 실제 d의 runtime type에 대해서 일반적인 연산자 오버로딩 규칙을 따라서 적합한 연산을 찾습니다.

4. 여기서는 암시적인 형변환이 있는데요, 컴파일러는 int와 d의 runtime type에 대한 모든 형변환을 고려해본뒤에 d에서 int로의 형변환이 가능한지 판단하도록 런타임에게 알려줍니다.

5. 이번에는 명시적인 형변환 인데요, 컴파일러는 이 변환을 컴파일하고 런타임에게 이 형변환에대해서 검토해보도록 알려줍니다.

6. 비록 컴파일타임에서 볼 수 있는 메서드를 호출하지만, 인자가 dynamic이므로 컴파일타임에서는 오버로딩 판별을 할 수 없습니다. 그래서 어떤 Console.WriteLine을 호출할지도 역시 런타임에 결정하게 됩니다.


- 마치면서

오늘은 dynamic타입에 대해서 이야기 해봤습니다. 재주가 부족해서 잘 설명한거 같지 않네요;;; 생각보다 dynamic배후의 이야기가 많은데요, 다음시간부터 거기에 대해서 하나씩 하나씩 이야기 해보겠습니다~.


- 참고자료

1. http://blogs.msdn.com/samng/archive/2008/10/29/dynamic-in-c.aspx
2. http://blogs.msdn.com/cburrows/archive/2008/10/27/c-dynamic.aspx
3. http://channel9.msdn.com/pdc2008/TL10/

[JumpToDX11-2]DeviceContext...넌 누구냣!!

DirectX 11 2009. 8. 24. 14:00 Posted by 알 수 없는 사용자



지난 회에서 DXGI 에 대해서 잠깐 살펴보았습니다.
DXGI 에 대한 사용방법은 여기서 언급하지 않습니다.
왜냐하면 제가 진행할 코딩에서는 기본적으로 셋팅되어 있는 그래픽 카드를 사용하는 것을 전제로
진행할 것이기 때문입니다.

혹시 호기심이 더 왕성하신 분들은 IDXGIFactory 인터페이스를 살펴보시면 됩니다.
멤버 함수중에 MakeWindowAssociation, EnumAdapters 정도 살펴보시면 도움이 될 것입니다.
( API 함수 이름만 봐도 느낌이 팍팍! )

예상하시겠지만, DXGI는 연결가능한 장치(어댑터)들을 나열해서
그것 중에 하나 선택하는 역활이 필요합니다.
저는 기본적으로 설정된 어댑터를 사용할 것이기 때문에 이들에 대해서는 언급하지 않겠습니다.
 DXGI 계열의 API들도 양이 상당합니다.( 그래서 일단 패스~ )


지난 회에 언급했던 디바이스 초기화를 위한 변수들 기억하시나요?
다시 나열해 보면 아래와 같습니다.




< IDXGISwapChain >

가장 먼저  IDXGISwapChain 에 대해서 살펴봐야하겠지만, 이것에 대한 별도의 설명이 필요할까요?
Front Buffer( 현재 화면에 보여지는 버퍼 )와 Back Buffer( 현재 연산을 해서 기록하는 버퍼 ) 를
준비해서 이것을 Flip 시키면서 번갈아 가면서 보여주는 것을 의미합니다.
( 너무 고전적인 내용이라 더 설명하면 혼날듯...)

우리가 렌더링할 영역(버퍼)에 대한 포맷과 같은 각종 속성들을 설정해 주어서 생성을 요구하고,
포인터를 받으면, 이들 버퍼에 대한 정보를 제어
할 수 있습니다.
나중에 살펴보게 되겠지만, Present() 라는 API 를 기억하시나요?
9.0 에서는 이것이 ID3DDevice9의 멤버함수로써 사용했었습니다.
하지만 현재는 IDXGISwapChain 의 멤버함수로 등록되어 잇습니다.
그래서 이에 대한 포인터가 필요합니다.^^
결론적으로 얘기 드리면 앞으로 화면 출력에 관한 모든 것은 IDXGI 계열의 인터페이스로서 제어할 수 있습니다.





아마 위와 같은 형식이겠죠? ( 각각의 성분에 대한 설명은 생략합니다...저걸 다 어찌 설명해요..-_- )

 

 

 < DeviceContext...넌 누구냣!! >

이상한 인터페이스가 DirectX11 에서 생겼습니다.
Device는 무엇인지 알겠는데, DeviceContext 는 또 무엇일까요?
사실 이것은 그동안 Device 인터페이스들이 해오던 역활을 두가지로 분리한 것에 지나지 않습니다.

즉, ID3D11Deivce 는 주로 리소스( 버퍼나 텍스쳐 등 )의 생성에 대한 인터페이스이며,
ID3D11DeviceContext 는  이들 리소스를 제어하고 관리하기 위한 인터페이스입니다.

그렇다면 왜 이렇게 두 가지로 분리된 것일까요?
먼저 아래의 그림을 살펴보겠습니다.




우리가 렌더링을 수행하기 위해서는 애플리케이션에서는 관련 Core API 와 Runtime을 사용하게 됩니다.
이들 Core API 와 Runtime 은 우리가 필요한 렌더링에 관한 모든 것을 수행합니다.
메모리 할당이나 리소스들의 수정, 메모리 바인딩, 각종 렌더링 스테이트의 제어 등등 굉장히 많죠.
( 물론 쉐이더 코드들을 통해서도 이들을 제어할 수 있는 부분이 있습니다만,
  여기서는 흐름상 고려하지는 않습니다.  ) 

DirectX 시스템은 Application 과의 오버헤드를 최소화 하기 위해서
이들 사이를 매우 얇은 추상화 단계로 디자인 했었습니다.
즉, Core API 나 Runtime 들은 바로 Driver 에 접근할 수 있었습니다.

그래도 약간(?) 존재해 있는 Application 과 하드웨어간의 오버헤드를 줄이기 위해서
기존의 Device 의 역활을 Device 와 DeviceContext 로 분리
하게 된 것입니다. 

그렇다면 여기서 발생되는 오버헤드란 것은 어떤 것일까요?( 의문에 의문 연속입니다..-_- )
우리가 사용하는 각종 API 들은 Runtime 에 전달되어서 하드웨어가 인식할 수 있는
커맨드( Command ) 들로 변환
됩니다.

Runtime 은 이들 커맨드들을 담을 수 있는 메모리 공간을 가지고 있어서, 커맨드들을 저장하게 됩니다.
그러다가 이들 버퍼가 가득차거나, 혹은 렌더링 데이터의 업데이트가 필요한 경우에
이들을 하드웨어로 전송하게 되는 것입니다.
바로 이 커맨드들에 대해서 오버헤드가 발생하는 것입니다.
이 커맨드들이 오버헤드를 발생시키는 이유는 여러가지가 있었습니다.
하드웨어의 경우에는 프로세싱( processing ) 스타일이 매우 다양하기도 했고,
API 와 하드웨어 상에서 커맨드 전달이 잘못 전달되는 경우도 있었다고 합니다.
( 아무래도 하드웨어가 너무 다양해서가 주된 이유였던 듯 합니다. )

이들에 대한 오버헤드를 줄이는 방법을 고민하던 중에 나온 결과물 중에 하나가
바로 'DeviceContext' 라는 것입니다.
( 뒤에 언급할 기회가 있겠지만, 'State Object' 가 바로 이 오버헤드를 줄이기 위해 등장한 개념이기도 합니다. )

Device 의 경우에는 오버헤드를 줄이기 위해 등장한 개념이
리소스의 생성/해제를 담당하는 커맨드들과 그 리소스들을 제어하는 커맨드들로 분리하는 것입니다.

 

분리함으로써 어떤 성능 향상이 있었을까요?
리소스의 생성과 해제는 사실 멀티스레드 형태의 API 호출에도 별 문제가 없습니다.
어차피 명령어들이 큐 형태로 쌓이게 될테니까요.
반면에 렌더링 커맨드들은 멀티스레드 형식으로 구성되면 큰일 나겠죠?

결국 Device 는 Free threaded 형식으로 구성되었고,
DeviceContext 는 그렇지 않다는 것
입니다.
Free threaded 형식으로 구성되었다는 것은 스레드에 안정성을 유지하기 위한
별도의 lock/unlock 작업이 필요없다는 것입니다.
멀티스레드에 안정적이라는 얘기는 스레드 세이프하다는 것입니다.

(정확하게 확신은 아직 드릴 수 없지만, 멀티스레드 관련 렌더링과도 관련이 있는 부분이 여기이지 않을까요.)

사실 리소스의 생성과 해제가 성능에 많은 부분을 차지한다고 볼때,
이렇게 분리되어진 것을 환영해야 할 것입니다.

 

 < 다음 회에는... >

글이 좀 길어지는 것 같아서 일단 여기서 마무리 합니다.
다음 회에는 나머지 초기화 부분에 대해서 계속 언급하겠습니다.^^

 





 

'DirectX 11' 카테고리의 다른 글

[DX11_#2]D3D Buffer( 2 / 2 )  (0) 2009.10.13
[DX11_#1]D3D Buffer( 1 / 2 )  (0) 2009.09.22
[JumpToDX11-4] ID3D11View  (0) 2009.09.07
[JumpToDX11-3] Feature Level  (0) 2009.08.31
[JumpToDX11-1] 사라진 Direct3D 오브젝트를 찾아서...  (8) 2009.08.17

Welcome to Dynamic C#(4) - 극과극 비교체험.

C# 2009. 8. 20. 20:25 Posted by 알 수 없는 사용자

- 또 쓸데없는 생각 하냐?

안녕하세요. 정말 오랜만입니다. 사연이 많은 사람이다 보니, 잠수를 자주 타게 되네열. -_-;;;;; 그래서 뭐라도 써야한다는 생각을 하다가, 별로 쓸모있을진 모르겠지만, 실행속도를 비교해보자는 생각이 들었습니다. 짧은 글이 되겠지만, 조금이라도 도움이 되길바라면숴!


- 빨랑 비교한거 내놔.

비교대상은 한 클래스에 있는 메서드를 그냥 호출하는 것과 dynamic을 통해 호출하는 것, 그리고 리플렉션을 통해서 호출하는 세가지방법입니다. 그리고 각 호출을 메서드를 10만, 50만, 100만, 300만, 500만번 호출하는 것으로 속도를 재어봤습니다. 실행의 대상이 된 코드는 아래와 같습니다.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Reflection;

namespace ConsoleApplication2
{
    class Test
    {
        public int FivePlusFive()
        {
            return 10;
        }
    }

    class Program
    {
        public void ReflectionCall()
        {
            object test = new Test();
            Type type = test.GetType();
            type.InvokeMember("FivePlusFive", System.Reflection.BindingFlags.InvokeMethod, (Binder)null,
                test, new object[] {});
        }

        public void DynamicCall()
        {
            dynamic test = new Test();
            test.FivePlusFive();
        }

        public void NormalCall()
        {
            Test test = new Test();
            test.FivePlusFive();
        }

        static void Main(string[] args)
        {
            Program prog = new Program();

            //for JIT compile
            prog.ReflectionCall();
            prog.DynamicCall();
            prog.NormalCall();

            long limit = 5000000;

            DateTime normalStart = DateTime.Now;
            for (int i = 0; i < limit; i++)
            {
                prog.NormalCall();
            }
            DateTime normalEnd = DateTime.Now;
            TimeSpan normalResult = normalEnd - normalStart;

            DateTime dynamicStart = DateTime.Now;
            for (int i = 0; i < limit; i++)
            {
                prog.DynamicCall();
            }
            DateTime dynamicEnd = DateTime.Now;
            TimeSpan dynamicResult = dynamicEnd - dynamicStart;

            DateTime reflectionStart = DateTime.Now;
            for (int i = 0; i < limit; i++)
            {
                prog.ReflectionCall();
            }
            DateTime reflectionEnd = DateTime.Now;
            TimeSpan reflectionResult = reflectionEnd - reflectionStart;

            Console.WriteLine("Normal Time : {0}", normalResult);
            Console.WriteLine("Dynamic Time : {0}", dynamicResult);
            Console.WriteLine("Reflection Time : {0}", reflectionResult);
        }
    }
}



JIT컴파일에 걸리는 시간을 빼기 위해서 일단 한번씩 먼저 실행했구요, 각각의 방법을 정해진 횟수만큼 실행해서 시간을 측정하는 방식으로 했습니다. 그럼 결과를 보시져!!!! 야호!!!! 완전 신나!!!! -_-......

- 10만번

- 50만번

- 100만번

- 300만번

- 500만번


그리고 위의 결과를 표로 종합해보면 아래와 같습니다.


일반 호출은 리플렉션에 비해서 너무 작아서 그런지 아예 나타나지도 않는군요-_-;;;; 별로의미있는 코드로 실험을 한건 아니지만, 다이나믹이 리플렉션에 비해서는 월등히 빠르군요. 아마도 DLR의 힘을 빌려서 리플렉션 보다 훨씬 빠른 방식을 이용하는 것 같습니다. 이 부분에 대해서는 좀 조사를 해봐야 할거 같네요.


- 피드백 및 정정사항!!ㅋ

이 글을 보시고 정성태님께서 피드백을 주셨습니다.(http://www.sysnet.pe.kr/Default.aspx?mode=2&sub=0&detail=1&pageno=0&wid=766&rssMode=1&wtype=0) 정성태님의 블로그를 들르면서 내공의 깊이에 감탄을 하곤했는데, 직접 피드백을 받으니 더 확실하네 느껴지네요^^ㅋ. 글의 내용을 보시면, 제가 단순히 리플렉션 호출을 반복하게 설정해놓은 것에서 리플렉션에 매우 불리한 결과가 도출되는 요인이 있음을 지적하시고, 더 빠르게 그리고 오히려 다이나믹 보다도 더 빠른 결과가 나올 수 있는 방식을 제시해주고 계십니다.

잘 몰랐던 부분에 대해서 지적해주셔서 좋은거 배웠네요~.


- 마치면서

별로 내용도 없는 글을 썼군요-_-;;; 다음 포스트부터는 dynamic에 대해서 좀 더 심도 깊게 파보려고 생각중입니다. 좋은글이 많은데 잠수타고 정신줄 놓느라고 못보고 있었더군요!! 암튼. 곧 돌아오겠슴돠. ㅋㅋㅋ

Parallel Patterns Library(PPL) - 병렬 알고리즘

VC++ 10 Concurrency Runtime 2009. 8. 19. 13:00 Posted by 알 수 없는 사용자

Parallel Patterns Library(이하 PPL)에는 데이터 컬렉션을 대상으로 쉽게 병렬 작업을 할 수 있게 해 주는 알고리즘이 있습니다. 이 알고리즘들은 생소한 것들이 아니고 C++의 표준 템플릿 라이브러리(STL)에서 제공하는 알고리즘과 비슷한 모양과 사용법을 가지고 있습니다.

( *데이터 컬렉션은 데이터 모음으로 배열이나 STL 컨테이너를 생각하면 됩니다 )

 

 

PPL에서 제공하는 병렬 알고리즘은 총 세 개가 있습니다.

 

1. parallel_for        알고리즘

2. parallel_for_each 알고리즘

3. parallel_invoke    알고리즘

 

 

세 개의 알고리즘 중 3 parallel_invoke만 생소하지 1번과 2번은 앞의 ‘parallel_’이라는 글자만 빼면 ‘for’‘for_each’ C++로 프로그래밍할 때 자주 사용하는 것이므로 친숙하게 느껴질 겁니다.

실제 병렬 여부만 제외하면 우리가 알고 있는 것들과 비슷한 동작을 합니다. 그래서 쉽게 배울 수 있고 기존의 코드에 적용하기도 쉽습니다.

 


parallel_for 알고리즘은 일반적인 for문을 사용할 때와 비슷하게 데이터 컬렉션에서 시작할 위치와 마지막 위치, 증가분(생략 가능합니다)에 해야할 작업 함수를 파라미터로 넘기면 됩니다. 사용 방법에서 for문과 다른 점은 작업 함수를 넘긴다는 점입니다.

 

parallel_for_each 알고리즘은 기존 for_each와 거의 같습니다. 데이터 컬렉션에서 시작할 위치, 마지막 위치, 작업 함수를 파라미터로 넘기면 됩니다. parallel_for의 경우 기존의 for문을 사용할 때는 작업 함수를 파라미터로 넘기지 않기 때문에 기존 for 문에 비해서 구조가 달라지지만 parallel_for_each는 기존 for_each와 파라미터 사용 방법이 같기 때문에 알고리즘의 이름만 바꾸면 될 정도입니다.

 

parallel_invoke 알고리즘 이전 회에 설명한 태스크 그룹과 비슷한면이 있습니다. 태스크 그룹과의 큰 차이점은 병렬로 할수 있는 작업은 10개로 제한 되지만 사용 방법은 태스크 그룹보다 더 간결한 점입니다다. 병렬 작업의 개수가 10개 이하인 경우 태스크 그룹보다 parallel_invoke를 사용하는 것이 훨씬 더 적합하다고 생각합니다.

 

 

 

 

이번은 간단하게 PPL에 있는 세 가지 병렬 알고리즘을 소개하는 것으로 마칩니다. 다음 회부터는 이번에 소개했던 세 개의 알고리즘을 하나씩 하나씩 자세하게 설명하겠습니다.

Parallel Patterns Library(PPL) - Task

VC++ 10 Concurrency Runtime 2009. 8. 18. 00:27 Posted by 알 수 없는 사용자
이번 글은 길이가 좀 깁니다. 내용은 복잡한 것이 아니니 길다고 중간에 포기하지 마시고 쭉 읽어주세요^^


이전 회에서는 PPL에 대한 개념을 간단하게 설명했고, 이번에는 PPL의 세가지 feature 중 태스크(Task)에 대해서 설명하려고 합니다. 태스크에 대한 설명은 이미 이전에 정재원님께서 블로그를 통해서 설명한 적이 있습니다. 정재원님의 글은 태스크 사용 예제 코드를 중심으로 설명한 것으로 저는 그 글에서 빠진 부분과 기초적인 부분을 좀 더 설명하려고 합니다.

 

태스크라는 것은 작업 단위라고 생각하면 좋을 것 같습니다. 작업이라는 것은 여러 가지가 될 수 있습니다. 피보나치 수 계산, 배열에 있는 숫자 더하기, 그림 파일 크기 변경 등 작고 큰 작업이 있습니다. 보통 크기가 큰 작업은 이것을 작은 작업 단위로 나누어 병렬 처리를 하기도 합니다.

 

PPL의 태스크는 작업을 그룹 단위로 묶어서 병렬로 처리하고 대기 및 취소를 할 수 있습니다.

 

 


태스크 핸들

태스크 핸들은 각각의 태스크 항목을 가리키며 PPL에서는 task_handle 클래스를 사용합니다. 이 클래스는 람다 함수 또는 함수 오브젝트 등을 태스크를 실행하는 코드로 캡슐화 합니다. 태스크 핸들은 캡슐화 된 태스크 함수의 유효 기간을 관리하기 때문에 중요합니다. 예를들면 태스크 그룹에 태스크 핸들을 넘길 때는 태스크 그룹이 완료 될때까지 유효해야합니다.


보통 태스크 관련 예제 코드를 보면 task_handle 대신 C++0x의 auto를 사용하는 편이 코드가 더 간결해지므로 task_handle 보다는 auto를 사용하고 있습니다.


 

 

unstructured structured Task Groups

태스크 그룹은 unstructured structured 두 개로 나누어집니다.

두개의 태스크 그룹의 차이는 스레드 세이프하냐 안하느냐의 차이입니다.

unstructured는 스레드 세이프 하고 structured는 스레드 세이프 하지 않습니다.


태스크 관련 예제에 자주 나오는 task_group 클래스는 unstructured 태스크 그룹이고, structured_task_group 클래스는 structured 태스크 그룹을 뜻합니다.

 

unstructured 태스크 그룹은 structured 태스크 그룹보다 유연합니다. 스레드 세이프 하며 작업 중 taks_group::wait를 호출하여 대기한 후 태스크를 추가한 후 실행할 수 있습니다. 그렇지만 성능면에서 structured 태스크 그룹이 스레드 세이프 하지 않으므로 unstructured 태스크 그룹보다 훨씬 더 좋으므로 적절하게 선택해서 사용해야 합니다.

 

structured 작업 그룹은 스레드 세이프 하지 않기 때문에 Concurrency Runtime에서는 몇가지 제한이 있습니다.

- structured 작업 그룹 안에 다른 structured 작업 그룹이 있을 경우 내부의 작업 그룹은 외부의 작업 그룹보다 먼저 완료해야 한다.

- structured_task_group::wait 멤버를 호출한 후에는 다른 작업을 추가한 후 실행할 수 없다.


 

 

초간단!!! 6단계로 끝내는 태스크 사용 방법


1. ppl.h 파일을 포함합니다.

   #include <ppl.h>

 

2. Concurrency Runtime의 네임 스페이를 선언합니다.

   using namespace Concurrency;

 

3. 태스크 그룹을 정의합니다.

  structured_task_group structured_tasks;

 

4. 태스크를 정의합니다.

  auto structured_task1 = make_task([&] { Plus(arraynum1, true); } );

 

5. 태스크를 태스크 그룹에 추가한 후 실행합니다.

  structured_tasks.run( structured_task1 );

 

6. 태스크 그룹에 있는 태스크가 완료될 때까지 기다립니다.

  structured_tasks.wait();

 

위의 순서대로 하면 태스크를 사용할 수 있습니다. 태스크 사용 참 쉽죠잉~ ^^.

참고로 여러 개의 태스크를 그룹에 추가하고 싶다면 6번 이전에 4번과 5번을 추가할 개수만큼 반복하면 됩니다.


* 4번의 Plus(arraynum1, true);는 하나의 태스크에서 실행할 함수입니다.

 


PPL의 태스크를 사용하면 병렬 프로그래밍을 간단한 6단계만으로 끝낼 수 있습니다. 만약 현재의 Win32 API로 이것을 구현하기 위해서는 학습에 많은 시간을 보낸 후 저수준의 API를 사용하여 구현해야 되기 때문에 구현 시간과 안정성에서 PPL의 태스크보다 손해를 봅니다.




태스크 그룹과 스레드 세이프

unstructured structured 태스크 그룹의 차이가 스레드 세이프 유무의 차이라고 했는데 이 말은

unstructured 태스크 그룹은 복수의 스레드에서 호출 및 대기를 할 수 있지만 structured 태스크 그룹은 그것을 생성한 스레드에서만 호출 및 대기를 할 수 있습니다.


예를 들면 스레드 A, 스레드 B가 있는 경우 스레드 A와 B에서 태스크를 실행 후 대기를 한다면 unstructured 태스크 그룹을 사용해야하고, 오직 하나의 스레드에서만(스레드 A에서만) 태스크를 실행 후 대기를 한다면 structured 태스크 그룹을 사용합니다.


스레드 세이프는 스레드 세이프 하지 않는 것보다 오버헤드가 발생합니다. 즉 스레드 세이프 버전은 스레드 세이프 하지 않은 버전보다 성능이 떨어진다는 것이죠.

그러니 태스크 그룹을 어떤 방식으로 사용할지 파악 후 스레드 세이프 필요성에 따라서 unstructured 태스크 그룹과 structured 태스크 그룹 중 상황에 알맞은 것을 선택해서 사용해야 합니다.




ps : 제가 8월 14일 글을 공개할 때 태스크 그룹의 스레드 세이프 특성을 잘 못 이해하여 잘못된 내용을 전달하였습니다. 그래서 오늘 글을 다시 수정하였습니다. ;;;;;;

다음부터는 틀린 글을 올리지 않도록 조심하겠습니다. ^^;;;;;;

[JumpToDX11-1] 사라진 Direct3D 오브젝트를 찾아서...

DirectX 11 2009. 8. 17. 14:00 Posted by 알 수 없는 사용자

< 인사 및 소개 >

안녕하세요.
저는 이번에 vsts2010 에 참여하게 된 조진현 이라고 합니다.

어떤 주제에 대해서 글을 쓰다는 것은 무척 어려운 일입니다.

그렇기 때문에, 이 스터디 참가를 굉장히 망설이기도 했습니다.
많은 분들과 함께 열정을 가지고 참가를 결심했고, 드디어 처음으로 글을 남기게 되었습니다.
제가 가장 우려하는 것은 잘못된 지식을 전달하는 것입니다.
그래서 조심스러운 마음으로 글을 작성할 것입니다.
잘못된 부분이나 미흡한 부분이 있으면, 바로 지적해주시면 감사하겠습니다.

제가 언급할 큰 주제는 DirectX 11 과 관련이 있습니다.
그 중에서도 멀티 코어를 활용한 DirectX 사용에 초점을 두고 글을 전개할 생각입니다.
글의 주요 대상은 DirectX9 를 사용하시다가 DirectX11 을 사용하고자 하시는 분들입니다.

일단 방대한 변화에 대해서 모두 나열하기는 힘듭니다.

그래서 간단히 제가 코딩을 하면서 필요했던 API 위주로 살펴보면서 변화를 언급하고자 합니다.
그런데 하나 문제가 있습니다.
현재 DirectX 11 은 하드웨어 가속이 지원되지 않습니다.
오직 REF 모드로만 작동을 합니다.
아마도 아직 정식으로 widnows 7 이 출시가 이루어지지 않아서 그런 듯 합니다.
이점, 꼭 주의하시기 바랍니다.
괜히 DirectX 11 예제 실행했다가, 실행 성능이 떨어진다고 컴퓨터를 부수는 행위는 자제해 주세요.^^


< 사라진 Direct3D 오브젝트를 찾아서... >

우리가 가장 먼저 접하게 되는 DirectX 의 API 는 CreateDevice() 일 것입니다.
사실 이전 버전까지는 CreateDevice() 에 대해서 별도로 언급할 내용이 없었을 것이지만,
늘(?) 그렇듯이 DirectX 의 변화를 설명해주는 API 가 바로 CreateDevice() 입니다.
일단 CreateDevice() 를 위한 관련 변수들부터 봐야겠죠?
 



잠깐!!
가장 먼저 헤더 파일들을 살펴보는게 순서이죠.

헤더는 다음과 같이 변경되었습니다.
굳이 헤더의 용도에 대해서 일일이 나열하지는 않았습니다.

// Direct3D11 includes
#include <dxgi.h>
#include <d3d11.h>
#include <d3dCompiler.h>
#include <d3dx11.h>
#include <dxerr.h>

 

라이브러리 링크는 아래의 것들을 해주시면 됩니다.

#pragma comment( lib, "dxguid.lib" )
#pragma comment( lib, "d3dcompiler.lib" )
#pragma comment( lib, "dxerr.lib" )
#pragma comment( lib, "dxgi.lib" )
#pragma comment( lib, "d3d11.lib" )
#pragma comment( lib, "d3dx11.lib" )




변수들을 나열해 보겠습니다.




 생소한 부분이 눈에 보이시나요?
 'ID3D11DeviceContext' 라는 것이 새롭게 등장했습니다. ( 다음 번에 언급할 것입니다. )
 그리고 Direct3D 인터페이스가 사라진 것을 찾으셨습니까?




위의 그림은 DirectX 9 의 아키텍쳐입니다.
우리가 작성하는 프로그램은 오직 Direct3D 나 GDI 를 통해서 저수준의 하드웨어와 통신을 할 수 있었습니다.

그런데 현재의 DirectX 아키텍쳐는 아래와 같습니다.



 여기서 또 하나 생소한 것이 등장했습니다.
바로 DXGI ( DirectX Graphics Infrastructure ) 입니다.
"DirectX9 에서 사라진 'Direct3D 오브젝트'를 'DXGI' 가 대체하는게 아닐까?" 라는 의문이 들었다면,
박수를 보내드리고 싶습니다.( 브라보~~ )


네, 맞습니다.
'DXGI' 라는 것이 바로 사라진 'Direct3D 오브젝트' 입니다.
'Direct3D 오브젝트' 의 역활에 대해서 혹시 기억하십니까?
하드웨어와 연결된 디바이스들을 나열하고, 모니터로 출력되는 결과들을 관리해주기도 했었습니다.
우리가 관리하기 힘든 저 수준의 작업들을 바로 이 'Direct3D 오브젝트'가 했었습니다.
그런데 이제는 이것을 'DXGI' 가 해주고 있습니다.
( IDXGISwapChain 보이시나요? 이것도 다음 회에 언급하겠습니다. )
 

아키텍쳐 구조를 보시면 아시겠지만, DirectX9 까지는 일반 애플리케이션에서 DirectX API 를 통하지 않고는
DirectX 를 사용할 수 없었습니다.
그런데 최근에는 일반 애플리케이션은 모두 DXGI 를 통해서 DirectX 를 사용하고 있습니다.
( 저만 놀라운 것은 아니겠죠? +_+ )
마이크로소프트에서도 강조하고 있는 사실 중에 하나가 바로 DirectX 는 더 이상 게임만을 위한 것이 아니라는 것입니다.
이제 사라진 줄 알았던 'Direct3D 오브젝트' 가 DXGI 라는 사실을 알았습니다.
앞으로 저수준의 작업이 필요하면 DXGI 를 직접 제어하거나 DirectX API 를 이용하셔도 됩니다.


< 다음 회에는... >

다음 번에는 실제로 DirectX API 를 이용한 초기화 작업에 대해서 다루고자 합니다.
즉, 우리가 앞서 선언했던 변수들에 대한 이야기를 하겠습니다.

'DirectX 11' 카테고리의 다른 글

[DX11_#2]D3D Buffer( 2 / 2 )  (0) 2009.10.13
[DX11_#1]D3D Buffer( 1 / 2 )  (0) 2009.09.22
[JumpToDX11-4] ID3D11View  (0) 2009.09.07
[JumpToDX11-3] Feature Level  (0) 2009.08.31
[JumpToDX11-2]DeviceContext...넌 누구냣!!  (1) 2009.08.24

양보할 줄 아는 Concurrency Runtime의 event

VC++ 10 Concurrency Runtime 2009. 8. 7. 18:48 Posted by 알 수 없는 사용자
병행 런타임 관련 두번째 예제로 event를 이용합니다. 여기서 이벤트는 뮤텍스 등과 같은 동기화 개체의 하나로 기존 Win32에서의 수동리셋이벤트(manual-reset event)와 같은 것을 말합니다.

기존 이벤트와 병행 런타임에서 제공하는 이벤트에는 한가지 중요한 차이점이 있습니다. 새로운 이벤트는 병행 런타임을 인식하여 작업이 블록되는 경우 다른 작업에 스레드를 양보(yield)합니다. 무조건 선점형으로 동작하는 기존 Win32 이벤트보다 더 지능적이고 효율적으로 동작하는 것이죠.

자, 그럼 코드를 살펴봅시다. 이 예제에서는 스케줄러의 병렬성을 2로 제한하고 그보다 많은 수의 작업을 병행 수행할 때, 기존 Win32 이벤트와 병행 런타임 이벤트를 각각 활용하는 경우 어떤 차이가 있는지 보여줍니다.

    1 // event.cpp : Defines the entry point for the console application.

    2 //

    3 // compile with: /EHsc

    4 #include <windows.h>

    5 #include <concrt.h>

    6 #include <concrtrm.h>

    7 #include <ppl.h>

    8 

    9 using namespace Concurrency;

   10 using namespace std;

   11 

   12 class WindowsEvent

   13 {

   14     HANDLE m_event;

   15 public:

   16     WindowsEvent()

   17         :m_event(CreateEvent(NULL,TRUE,FALSE,TEXT("WindowsEvent")))

   18     {

   19     }

   20 

   21     ~WindowsEvent()

   22     {

   23         CloseHandle(m_event);

   24     }

   25 

   26     void set()

   27     {

   28         SetEvent(m_event);

   29     }

   30 

   31     void wait(int count = INFINITE)

   32     {

   33         WaitForSingleObject(m_event,count);

   34     }

   35 };

   36 

   37 template<class EventClass>

   38 void DemoEvent()

   39 {

   40     EventClass e;

   41     volatile long taskCtr = 0;

   42 

   43     //태스크그룹을 생성하고 여러 태스크 사본을 스케줄링합니다.

   44     task_group tg;

   45     for(int i = 1;i <= 8; ++i)

   46         tg.run([&e,&taskCtr]{           

   47 

   48       //작업 부하를 시뮬레이션합니다.

   49             Sleep(100);

   50 

   51             //태스크 카운터를 증가시킵니다.

   52             long taskId = InterlockedIncrement(&taskCtr);

   53             printf_s("\tTask %d waiting for the event\n", taskId);

   54 

   55             e.wait();

   56 

   57             printf_s("\tTask %d has received the event\n", taskId);

   58 

   59     });

   60 

   61     //이벤트를 셋하기 전에 충분히 시간을 보냅니다.

   62     Sleep(1500);

   63 

   64     printf_s("\n\tSetting the event\n");

   65 

   66     //이벤트를 셋

   67     e.set();

   68 

   69     //작업들의 완료를 대기

   70     tg.wait();

   71 }

   72 

   73 int main ()

   74 {

   75     //스레드 둘만을 활용하는 스케줄러를 생성합니다.

   76     CurrentScheduler::Create(SchedulerPolicy(2, MinConcurrency, 2, MaxConcurrency, 2));

   77 

   78     //협력적 이벤트를 사용할 경우, 모든 작업들이 시작됩니다.

   79     printf_s("Cooperative Event\n");

   80     DemoEvent<event>();

   81 

   82     //기존 이벤트를 사용하면, Win7 x64 환경이 아닌한

   83     //ConcRT가 블록 상황을 인식하지 못하여 첫 두 작업만이 시작됩니다.

   84     printf_s("Windows Event\n");

   85     DemoEvent<WindowsEvent>();

   86 

   87     return 0;

   88 }


WindowsEvent 클래스는 기존 Win32 이벤트를 위한 랩퍼(wrapper) 클래스입니다. DemoEvent 함수 템플릿이 사용할 이벤트 형을 템플릿 인자로 받아 실제 작업을 하는 놈입니다. PPL(Parallel Patterns Library)의 task를 이용해 8개 작업을 만들고 각각에서 이벤트를 기다리도록 하고 있습니다.

결과는 다음과 같이 나올 겁니다.


병렬성이 둘로 제한되는 상황에서도 병행 런타임의 이벤트를 사용할 경우 각 작업이 블록될 경우 다른 작업에 스레드를 양보하기 때문에 8개의 작업이 모두 시작되는 것을 확인하실 수 있습니다. 반면, 기존 이벤트의 경우 두 작업만이 시작되었다가 이벤트를 받고 두 작업이 종료된 후에나 다른 작업들이 시작되는 것을 확인하실 수 있습니다.

Parallel Patterns Library (PPL)

VC++ 10 Concurrency Runtime 2009. 8. 6. 06:00 Posted by 알 수 없는 사용자

이제 본격적으로 VC++ 10의 병렬 프로그래밍에 대한 이야기를 시작합니다.

첫 번째는 이름만 들어도 딱 '병렬 프로그래밍' 이라는느낌을 주고 가장 많이 사용될 것으로 생각하는 Parallel Patterns Library (PPL)입니다정말 이름에서 딱 느낌이 오죠 ^^



PPL은 크게 세 개의 features로 나누어집니다.

1. Task Parallelism : 병렬적으로 여러 가지 작업 처리

2. Parallel algorithms : 데이터 컬렉션을 제너릭 알고리즘으로병렬 처리

3. Parallel containers and objects :concurrent 접근이 가능한 제너릭 컨테이너

 


PPL 모델은 C++의 Standard Template Library(STL)과비슷합니다.

예를 들면 STL에는 for_each 라는 것이 있는데 PPL에는 이것의 병렬 버전인 parallel_for_each가 있습니다. 뒤에 설명하겠지만 parallel_for_each에 대해서 간단하게 말하면 array의 항목을 순회하는 parallel 알고리즘입니다.



PPL을 사용하기 위해서는 먼저 namespace Concurrency를 선언한 후 ppl.h 파일을 포함합니다.
........
#include <ppl.h>

using namespace Concurrency;
..............


먼저 parallel_for_each를 사용한 코드를 보여 드리겠습니다. parallel_for_each는 다음에 자세히 설명하겠으니 이번은 PPL 이라는 것이 어떻게 사용하는지만 아래 코드를 통해서 보세요^^

< 리스트 1. parallel_for_each 예제 >

#include <ppl.h>

#include <array>

#include <algorithm>

 

using namespace std;

using namespace std::tr1;

using namespace Concurrency;

 

int main()

{

   // Create anarray object that contains a few elements.

   array<int, 3> a = {13, 26, 39};

 

   // Use thefor_each algorithm to perform an operation on each element

   // of the arrayserially.

  for_each(a.begin(), a.end(), [&](int n) {

      // TODO:Perform some operation on n.

   });

 

   // Use theparallel_for_each algorithm to perform the same operation

   // in parallel.

  parallel_for_each(a.begin(), a.end(), [&](int n) {

      // TODO:Perform some operation on n.

   });

}


<리스트 1>의 코드를 보면 람다를 사용한 부분도 보이죠? 예전에 제가 C++0x의 새로운 기능에 의해 C++의 성능과 표현력이 향상 되었다고 이야기 했습니다. 이런 장점들이 PPL에 많은 기여를 하였습니다.




PPL과 OpenMP

예전에 PPL이 MSDN 매거진을 통해서 공개 되었을 때 많은 분들이 OpenMP와 비슷하게 보시고 왜 기존에 있는 것과 같은 것을 또 만드냐 라는 이야기를 하는 것을 들은 적이 있습니다.

PPL과 OpenMP는 같은 것이 아닙니다. 표현 방법이 얼핏 비슷하게 보일지 몰라도 개념이나 기반은 많이 다릅니다.

OpenMP는 pragma 지신문이고 PPL은 순수 C++ 템플릿으로 만들어진 라이브러리입니다.
그래서 PPL은 표현성과 유연성이 OpenMP에서 비해서 훨씬 더 뛰어납니다.
또한 PPL은 Concurrency Runtime 기반 위에 구축되므로 동일한 런타임을 기반으로 하는 다른 라이브러리와 잠재적 상호 운용성이 제공됩니다.

PPL은 어떤 것인지, 왜 OpenMP 보다 더 좋은지 이후에 제가 적을 글을 보면 쉽게 알 수 있으리라 생각합니다.


오늘은 PPL의 개념에 대한 이야기로 마치고 다음에는 PPL의 하나인 task에 대해서 이야기 하겠습니다.
시간 여유가 있거나 task에 대해서 빨리 알고 싶은 분들은 일전에 정재원님이 task 예제를 설명한 글을 올린 적이 있으니 먼저 그것을 보면서 예습을 하는 것도 좋습니다.



Concurrency Runtime

VC++ 10 Concurrency Runtime 2009. 7. 30. 06:00 Posted by 알 수 없는 사용자

VSTS 2010 VC++ 10의 큰 핵심 feature 두 가지를 뽑으라고 하면 저는 C++0x와 Concurrency Runtime 두 가지를 뽑고 싶습니다.

VC++ 10
은 시대의 변화에 맞추어 새로운 C++ 표준과 병렬 프로그래밍을 받아들였습니다.

현재도 Win32 API에 있는 Thread  관련 API를 사용하여 병렬 프로그래밍을 할수 있습니다. 하지만 이것만으로 병렬 프로그래밍을 하기에는 너무 불편합니다.
그래서 VC++ 10에는 Concurrency Runtime 이라는 것이 생겼습니다.



Concurrency
Parallel의 차이


Concurrency는 병행, Parallel은 병렬이라고 합니다.

Concurrency는 독립된 요구를 동시에 처리하고, Parallel은 하나의 task를 가능한 Concurrency로 실행할 수 있도록 분해하여 처리합니다.

< 그림 출처 : http://blogs.msdn.com/photos/hiroyuk/picture9341188.aspx >


VSTS 2010에서는 Concurrency는 런타임 용어 Paralell은 프로그래밍 모델 용어가 됩니다.
이를테면 프로그래밍 때에 분해하여 런타팀에 넘기면(이것이 병렬화), 런타임은 그것을 Parallel로 실행합니다. Concurrency Runtime은 Parallel 런타임으로 이해하면 될 것 같습니다.




Concurrency Runtime

< 그림 출처 : http://blogs.msdn.com/photos/hiroyuk/picture9341189.aspx >

Cuncurrency Runtime은 C++ 병행 프로그래밍 프레임워크입니다. Cuncurrency Runtime복잡한 parallel code 작성을 줄여주고, 간단하게 강력하고, 확장성 있고 응답성 좋은 parallel 애플리케이션을 만듭니다. 또한 공통 작업 스케줄러를 제공하며 이것은 work-stealing 알고리즘을 사용하여 프로세싱 리소스를 증가시켜 애플리케이션의 확장성을 높여줍니다.

 


Cuncurrency Runtime에 의해 다음의 이점을 얻을 수 있습니다.

1. data parallelism 향상 : Parallel algorithms은 컬럭션이나 데이터 모음을 복수의 프로세서를 사용하여 배분하여 처리합니다.

2. Task parallelism : Task objects는 프로세서 처리에 독립적으로 복수 개로 배분합니다.

3. Declarative data parallelism : Asynchronous agents와 메시지 전달로 어떻게 실행하지 몰라도 계산을 선언하면 실행됩니다.

4. Asynchrony : Asynchronous agents는 데이터에 어떤 일을 처리하는 동안 기다리게 합니다.

 

 

Cuncurrency Runtime 컴포넌트는 네 가지로 나누어집니다.

1. Parallel Patterns Library (PPL)

2. Asynchronous Agents Library (AAL)

3. work scheduler

4. resource manager

 

이 컴포넌트는 OS와 애플리케이션 사이에 위치합니다.


< 그림 출처 : MSDN >


Cuncurrency Runtime의 각 컴포넌트는 아래의 네 개의 헤더 파일과 관련 되어집니다.

컴포넌트

헤더 파일

Parallel Patterns Library (PPL)

ppl.h

Asynchronous Agents Library (AAL)

agents.h

Concurrency Runtime work scheduler

concrt.h

Concurrency Runtime resource manager

concrtrm.h

 

 

Concurrency Runtime을 사용하기 위해서는  namespace Concurrency를 선업합니다.

Concurrency RuntimeC Runtime Library (CRT)를 제공합니다.


Concurrency Runtime의 대부분의 type와 알고리즘은 C++의 템플릿으로 만들어졌습니다. 또한 이 프레임워크에는 C++0x의 새로운 기능이 많이 사용되었습니다.

대부분의 알고리즘은 파라메터 루틴을 가지고 작업을 실행합니다. 이 파라메터는 람다 함수, 함수 오브젝트, 함수 포인터입니다.



처음 들어보는 단어를 처음부터 막 나오기 시작해서 잘 이해가 안가는 분들이 있지 않을까 걱정이 되네요. 그래서 핵심만 한번 더 추려 보겠습니다.^^

1. Concurrency는 병행, Parallel은 병렬.
2. VSTS 2010에서는 Concurrency는 런타임 용어로 Paralell은 프로그래밍 모델 용어.
3. 프로그래밍 때에 분해하여 런타팀에 넘기면(이것이 병렬화), 런타임은 그것을 Parallel로 실행.
4. Cuncurrency Runtime은 C++ 병행 프로그래밍 프레임워크로 복잡한 parallel code 작성을 줄여주고, 간단하게 강력하고, 확장성 있고 응답성 좋은 parallel 애플리케이션을 만들수 있으며 공통 작업 스케줄러를 제공하며 이것은 work-stealing 알고리즘을 사용하여 프로세싱 리소스를 증가시켜 애플리케이션의 확장성을 높여준다.

5. Cuncurrency Runtime 컴포넌트는 네 가지로 나누어진다.

  1. Parallel Patterns Library (PPL)

  2. Asynchronous Agents Library (AAL)

  3. work scheduler

  4. resource manager



그럼 다음에는 Parallel Patterns Library(PPL)에 대해서 이야기 하겠습니다.^^





PPL task를 이용한 피보나치 수 계산

VC++ 10 Concurrency Runtime 2009. 7. 17. 00:43 Posted by 알 수 없는 사용자
오래만에 돌아왔습니다.

동영상 자막 번역은 영 아니다라는 판단하에(?), 일반적인 형식으로 C++0xVisual Studio 2010에서의 병렬 프로그래밍에 대해 글을 써볼 생각입니다.

일단 http://code.msdn.microsoft.com/concrtextras 에서 샘플 코드를 받으십시오. 그를 기준으로 당분간은 진행 예정입니다. 당연히 돌려보려면 Visual Studio 2010 베타1이 필요합니다.

오늘은 Parallel Patterns Library를 이용한 피보나치 수 계산 예부터 살펴보죠. 순차 수행 버전과 PPL의 태스크 기능을 이용한 병렬 수행 버전의 성능 비교가 첫번째 핵심 사항입니다. 그리고 malloc 대 Concurrency::Alloc의 성능 비교가 두번째 핵심 사항 되겠습니다.

소스를 찬찬히 살펴보죠.

    8 #include "windows.h"

    9 #include <ppl.h>

   10 

   11 using namespace Concurrency;

   12 

   13 int SPINCOUNT = 25;

   14 

   15 //Spins for a fixed number of loops

   16 #pragma optimize("", off)

   17 void delay()

   18 {

   19     for(int i=0;i < SPINCOUNT;++i);

   20 };

   21 #pragma optimize("", on)


먼저 헤더 파일 포함이 나오고, 각 작업의 계산 부하 조절을 위한 idle loop 함수가 나옵니다. pragma 디렉티브로 최적화를 해당 함수에 대해서만 끄고 있습니다. 그래야 실제 부하 조절 용도로 의미가 있겠죠.

   23 //Times execution of a functor in ms

   24 template <class Functor>

   25 __int64 time_call(Functor& fn)

   26 {

   27     __int64 begin, end;

   28     begin = GetTickCount();

   29     fn();

   30     end = GetTickCount();

   31     return end - begin;

   32 };


이 함수는 단순히 프로파일링(성능 측정)을 위한 유틸리티 함수 되겠습니다.

   34 //Computes the fibonacci number of 'n' serially

   35 int fib(int n)

   36 {

   37     delay();

   38     if (n< 2)

   39         return n;

   40     int n1, n2

   41     n1 = fib(n-1);

   42     n2 = fib(n-2);

   43     return n1 + n2;

   44 }


실제 가장 이해하기 쉬운 재귀 방식의 피보나치 수 구하기 함수입니다. 당연히 이 방식은 중복 계산이 많아 성능이 한참 떨어지게 되는데요, 이 글의 쟁점은 아니므로 넘어갑니다.

   45 //Computes the fibonacci number of 'n' in parallel

   46 int struct_fib(int n)

   47 {

   48     delay();

   49     if (n< 2)

   50         return n;

   51     int n1, n2;

   52 

   53     //declare a structured task group

   54     structured_task_group tasks;

   55 

   56     //invoke the first half as a task

   57     auto task1 = make_task([&n1,n]{n1 = struct_fib(n-1);});

   58     tasks.run(task1);

   59 

   60     //run the second recursive call inline

   61     n2 = struct_fib(n-2);

   62 

   63     //wait for completion

   64     tasks.wait();

   65 

   66     return n1 + n2;

   67 }


다음은 해당 알고리즘의 병렬 구현입니다. structured_task_group 변수를 하나 선언하고, make_task를 이용해 재귀 호출의 한쪽을 담당할 태스크를 만든 뒤, 태스크 그룹을 통해 돌립니다. tasks.wait() 호출을 통해 스폰한 태스크 작업이 마무리될 때까지 대기한 후, 최종 결과를 리턴하고 있습니다. C++0x의 람다가 쓰이고 있는 것을 확인하실 수 있습니다.
재귀적으로 호출이 되면서 꽤나 많은 태스크들이 만들어질텐데, 그냥 스레드 수준에서 직접 이런 작업을 했다면, 실제 하드웨어가 지원하는 병렬 수행의 수보다 과도하게 많은 스레드 생성이 이루어지면서, 상당히 비효율적으로 돌텐데요. PPL의 태스크 개념을 사용해 이렇게 보다 고수준에서 작업하면 그러한 오버헤드를 상당 부분 알아서 최적화 해줍니다.

   69 //Computes the fibonacci number of 'n' allocating storage for integers on heap

   70 int struct_fib_heap(int n)

   71 {

   72     delay();

   73     if (n< 2)

   74         return n;

   75     //n1 and n2 are now allocated on the heap

   76     int* n1;

   77     int* n2;

   78 

   79     //declare a task_group

   80     structured_task_group tg

   81 

   82     auto t1 = make_task([&]{

   83         n1 = (int*) malloc(sizeof(int));

   84         *n1 = struct_fib_heap(n-1);

   85     });

   86     tg.run(t1);

   87     n2 = (int*) malloc(sizeof(int));

   88     *n2 = struct_fib_heap(n-2);

   89     tg.wait();

   90     int result = *n1 + *n2;

   91     free(n1);

   92     free(n2);

   93     return result;

   94 }


malloc으로 힙에 버퍼를 잡아 결과를 리턴하는 버전입니다. Concurrency::Alloc과의 성능 비교를 위한 함수 되겠습니다.

   95 //Computes the fibonacci number of 'n' using the ConcRT suballocator

   96 int struct_fib_concrt_heap(int n)

   97 {

   98     delay();

   99     if (n< 2)

  100         return n;

  101     int* n1;

  102     int* n2;

  103     structured_task_group tg

  104     auto t1 = make_task([&]{

  105         n1 = (int*) Concurrency::Alloc(sizeof(int));

  106         *n1 = struct_fib_concrt_heap(n-1);

  107     });

  108     tg.run(t1);

  109     n2 = (int*) Concurrency::Alloc(sizeof(int));

  110     *n2 = struct_fib_concrt_heap(n-2);

  111     tg.wait();

  112     int result = *n1 + *n2;

  113     Concurrency::Free(n1);

  114     Concurrency::Free(n2);

  115     return result;

  116 }


이번에는 병렬 런타임의 suballocator를 이용하고 있습니다.

  117 int main()

  118 {

  119     int num = 30;

  120     SPINCOUNT = 500;

  121     double serial, parallel;

  122 

  123     //compare the timing of serial vs parallel fibonacci

  124     printf("computing fibonacci of %d serial vs parallel\n",num);

  125     printf("\tserial:   ");

  126     serial= (double)time_call([=](){fib(num);});

  127     printf("%4.0f ms\n",serial);

  128 

  129     printf("\tparallel: ");

  130     parallel = (double)time_call([=](){struct_fib(num);});

  131     printf("%4.0f ms\n",parallel);

  132 

  133     printf("\tspeedup: %4.2fX\n",serial/parallel);

  134 

  135     //compare the timing of malloc vs Concurrency::Alloc,

  136     //where we expect to get speedups because there are a large

  137     //number of small malloc and frees.

  138 

  139     //increase the number of tasks

  140     num = 34;

  141 

  142     //reduce the amount of 'work' in each task

  143     SPINCOUNT = 0;

  144 

  145     //execute fib using new & delete

  146     printf("computing fibonacci of %d using heap\n",num);

  147     printf("\tusing malloc:             ");

  148     serial= (double)time_call([=](){struct_fib_heap(num);});

  149     printf("%4.0f ms\n",serial);

  150 

  151     //execute fib using the concurrent suballocator

  152     printf("\tusing Concurrency::Alloc: ");

  153     parallel = (double)time_call([=](){struct_fib_concrt_heap(num);});

  154     printf("%4.0f ms\n",parallel);

  155 

  156     printf("\tspeedup: %4.2fX\n",serial/parallel);

  157 

  158     return 0;

  159 }


마지막으로  main 함수입니다. 단순히 각 함수를 호출하고 시간을 측정한 뒤 적절한 메시지를 출력하고 있습니다. 역시 람다가 쓰여 구문이 간결해졌습니다.

2 코어 머신에서 디버그 버전으로 돌려본 결과는 다음과 같습니다.


순차 대 병렬 버전의 경우 1.29배 속도 향상, malloc 대 Concurrency::Alloc의 경우 2.60배 속도 향상을 확인할 수 있습니다. 병렬 버전에서의 속도 향상이 생각보다 미미한데요. 제 컴퓨터가 좀 문제(?)가 있어서 그럴지도 모르겠습니다; 한편, 병렬 환경에서 메모리 할당 및 해제가 빈번한 경우, 반드시 병렬 런타임의 할당자를 써야겠군요.


추가: 제 블로그에 관련 주제로 글(두가지 C++ 차세대 병렬 플랫폼 간단 비교)을 하나 올렸습니다. 참고하세요. ^^

Welcome to F#(12) - 공동작업 좋치아니항가

F# 2009. 7. 16. 14:38 Posted by 알 수 없는 사용자

- F#의 첫 라이브러리 출연(Feat. C#)

오늘은 간단하게, F#에서 만든 코드를 C#에서 사용해보는 시간을 갖겠습니다. 자~ 간단하게 간단하게~.

우선, C#으로 콘솔프로그래밍 프로젝트를 하나 생성하고 같은 솔루션에 F# 라이브러리 프로젝트를 하나 추가합니다. 대략 아래와 같은 모양이 됩니다. 



그리고 Module1.fs에다가 아래의 코드를 작성합니다. 


 module FirstModule =
    type Type1 =
        { num: int }
        member self.reverse = { num = -self.num }
        member self.add(num2) = { num = self.num + num2 }
       
type Type2 =
    { num: int }
    member self.reverse = { num = -self.num }
    member self.add(num2) = { num = self.num + num2 }

let add5 num = num + 5



FirstModule라는 모듈을 선언하고 그 안에 Type1이라는 타입을 선언한 걸 보여주고 있습니다. 그리고 Type1의 멤버로는 int타입의 num이 있고 reverse, add라는 함수가 있습니다. 각각의 함수뒤의 {}안의 코드는 num에 새로운 값을 할당해서 Type1의 새로운 객체를 리턴하는 내용으로 보시면 이해가 되실 겁니다. 그리고 그 아래에는 모듈선언없이 그냥 Type2라는 타입을 선언했구요, 그 밑에는 함수 add5를 선언했습니다. 이런 코드들을 C#에서 참조한다면 어떻게 쓸 수 있을까요? 

 using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace CoWorkWithFSharp
{
    class Program
    {
        static void Main(string[] args)
        {
            Module1.FirstModule.Type1 type1 = new Module1.FirstModule.Type1(5);
            Module1.FirstModule.Type1 type1_2 = type1.reverse;

            Console.WriteLine(type1_2.num);

            Module1.Type2 type2 = new Module1.Type2(6);
            Module1.Type2 type2_2 = type2.add(9);

            Console.WriteLine(type2_2.num);

            Console.WriteLine(Module1.add5(12));
        }
    }
}



위 코드를 보시면, Module1이라는 파일이름이 가장 먼저 오는 걸 볼 수 있습니다. 파일이름자체가 모듈이 되는거죠. 베타1이라서 그런지는 모르겠지만, F#으로 만든 코드는 "using Module1;" 형태로 using을 할 수 없었습니다. 에러메세지를 보면 네임스페이스가 아니라서 안된다고 하니 모듈도 클래스로 취급이 되는거 같은데 개선이 될지 아니면, 이대로 남을지 모르겠네요. 코드를 보시면 알겠지만, 매번 모듈명을 반복해서 적어줘야 하니 좀 빡세긴 합니다만;;;; 

아무튼, 저렇게 F#에서 작성한 타입의 객체를 생성할 수 있구요, 멤버 메서드와 함수를 호출할 수도 있습니다. 다만, 함수의 결과로 새로운 객체가 생성된다는 점 기억하시구요. 실행결과는 아래와 같습니다. 



그러면, 지난주에 만들었던 Discriminated Union을 이용한 간단한 사칙연산 코드를 C#에서 사용해보도록 하겠습니다. 아래코드를 Module1.fs에 추가하구요 

type Expr =
    | Num of float
    | Add of Expr * Expr
    | Sub of Expr * Expr
    | Mul of Expr * Expr
    | Div of Expr * Expr

let rec Calc expr =
    match expr with
    | Num num -> num
    | Add (e1, e2) -> (Calc e1) + (Calc e2)
    | Sub (e1, e2) -> (Calc e1) - (Calc e2)
    | Mul (e1, e2) -> (Calc e1) * (Calc e2)
    | Div (e1, e2) -> (Calc e1) / (Calc e2)



아래 코드를 C#코드에 추가해줍니다. 

 Module1.Expr expr = new Module1.Expr._Mul(
    Module1.Expr.Add(
        Module1.Expr.Num(5.0),
        Module1.Expr.Num(6.0)),
        Module1.Expr.Div(
            Module1.Expr.Num(5.0),
            Module1.Expr.Num(2.0)));

Console.WriteLine(Module1.Calc(expr));



위 코드를 보시면, 지난주에 계산을 위해서 만들었던 식을 그대로 C#에서 생성했습니다. 실행결과는 아래와 같습니다. 




-정리하며

아~ 간단한 포스트였군요~. 대략 F#에서 만든 코드를 이런식으로 C#등의 다른 언어에서 호출해서 사용할 수 있습니다. 어느덧 베타1이 나온지도 꽤 됀 느낌이네요. 많이들 익숙해지셨나요? VS2008에서 뭔가를 만들다가 C#4.0의 dynamic을 쓰면 딱이겠다고 생각하는 순간, 아쉬움이 느껴지더군요. 아직 F#은 그만큼 익숙하지 못해서 그런경우는 없었던거 같네요-_-;;; 언제쯤 F#의 Jedi가 될 수 있을까요? ㅋㅋㅋ.


-참고자료

1. Expert F#, Don Syme, Adam Granicz,Antonio Cisternino, Apress

Welcome to F#(11) - 차별을 권장하는 언어인거임?!?!

F# 2009. 7. 8. 22:51 Posted by 알 수 없는 사용자

- 이말이 사실인게냐

discriminate는 (1)여러가지가 있을때 그것들이 서로 다르다는 걸 인식할 수 있다는 의미 (2) 특정한 단체의 사람들에게 against해서 쓰일때는 그 사람들에게 뭔가 부당하게 불이익이나 이익을 주는 의미를 가지고 있습니다.

즉, 둘다 차이에 근거한 의미인데요 첫째는 구별정도가 되겠고 둘째는 차별정도가 되겠네요. F#은 Discriminated Union(이하 union)이라는 아주 쓸모있는 기능을 가지고 있습니다. 그렇다면 F#은 차별을 권장하는 언어로서 인류발전에 그닥 긍정적이지 못한 언어일까요? 다행히 F#에서의 Discriminated는 첫번째인 구별의 의미로 쓰입니다.(뭐가 다행이지?-_-)


- 영단어엔 관심없는거임. 소스내놓으라해.

union의 형태는 아래와 같습니다. 


  type type-name =
   | case-identifier1 [of type1 [ * type2 ...]
   | case-identifier2 [of type3 [ * type4 ...] 


type키워드에 타입이름이 따라오고요 그리고 등호기호, 그리고 수직파이프(|) 문자로 나눠지는 식별자와 식별자의 타입리스트가 이어집니다. 저기서 각각의 식별자(case-identifier)를 discriminator(이하 구분자)라고 하는군요. 바로 차별구분자인거죠. 사칙연산 계산기를 구현하는 짧막한 코드를 완성해가면서 알아볼까요?


 type Expr =
    | Num of float
    | Add of Expr * Expr
    | Sub of Expr * Expr
    | Mul of Expr * Expr
    | Div of Expr * Expr


위 코드는 간단한 사칙연산에 필요한 구분자를 union을 이용해서 선언한 코드입니다. 다섯개의 구분자를 정의하고 있는데요. Num은 그냥 float타입이고, 나머지는 float * float인 tuple타입입니다. 나머지코드를 보시기전에 이 union만 가지고 이야기 해보도록 하죠. 이걸 어케 쓸까요? 


 

위의 그림을 보시면, 저렇게 쓰는거구나~ 하고 아실 수 있습니다. 구분자의 이름을 주고 괄호안에 구분자의 타입에 해당하는 값을 넣어주면 되는거죠. 그러면 Expr타입의 Num이라는 구분자이고 값은 float타입인 5.0을 가지고 있구나~ 하고 알마먹는 것이죠. Add도 마찬가지로 이해할 수 있습니다. 그리고 위의 union의 정의에 이어서 계산에 쓸 수식을 하나 정의해보죠. 

 let expr = Mul(Add(Num(5.0), Num(6.0)), Div(Num(5.0), Num(2.0))) // (5+6) * (5 /2)


주석에 나와있듯이 (5+6) * (5/2)를 위의 구분자로 표현한 수식입니다. 그러면, union을 이렇게 선언해서 구분자를 저렇에 선언한다는건 알겠는데, 저걸 어따써먹는건지 하는 궁금증이 생깁니다. union과 찰떡궁합인게 바로 pattern matching입니다. 아래의 코드를 보시죠

 let rec Calc expr =
    match expr with
    | Num num -> num
    | Add (e1, e2) -> (Calc e1) + (Calc e2)
    | Sub (e1, e2) -> (Calc e1) - (Calc e2)
    | Mul (e1, e2) -> (Calc e1) * (Calc e2)
    | Div (e1, e2) -> (Calc e1) / (Calc e2)

 
위의 코드는 제귀호출이 가능한 Calc라는 메서드인데요 expr이라는 인자를 하나 받습니다. 그리고 그 expr을 가지고 일치하는 패턴을 찾습니다. 말로 하지 말고 그림으로 하겠습니다! 아래의 그림을 보시져.(잘 안보이심 클릭해서 크게보시길...-_-)
 

 

왼쪽 상단은 F# Interactive에서 입력한 부분이고, 오른쪽 하단은 패턴매칭하는 코드 부분이죠. Num(5.0)의 실제 타입은 "Num 5.0"이고 그게 그대로 "Num num"부분에 매칭이 되면서, num의 값은 5.0이 되는거죠. 패턴매칭의 결과로 (Num 5.0) 은 그냥 5.0을 리턴합니다. 그리고 Add(Num 4.0,Num 9.0)도 각각의 Num이 e1, e2에 매칭이 돼서 Calc를 다시 호출하는 모습입니다. 물론 결과적으로 (Num 4.0) -> 4.0, (Num 9.0) -> 9.0이 리턴되면서 두수의 합이 리턴되겠죠. 그러면 마지막으로 결과를 출력합니다.
 

 Calc expr |> printfn "%f"


위의 코드를 실행한 결과는 아래와 같습니다.
 


제대로 결과가 출력된 게 보이시죠? ㅋㅋㅋ. 그럼 오늘도 지난번 처럼 ildasm을 통해서 IL코드를 둘러볼까 합니다.

 
위 사진을 보시면 지난 포스트의 curry처럼 Expr도 클래스로 선언된걸 확인하실 수 있고, union의 구분자중의 하나인 Num도 Expr내부에 중첩된 클래스로 선언되어 있는걸 보실 수 있습니다. 그리고 Num이 float을 하나 가지는데 그게 num1이라는 이름으로 선언되어있는 걸 IL코드를 통해서도 확인해보실 수 있습니다. 즉, 내부적으로는 구분자별로 클래스를 선언해서 타입으로 검사를 하는걸로 생각할 수 있겠네요. 아래에 보시면 그 타입검사를 위한 메서드들이 선언되어있는걸 확인하실 수 있습니다.
 

 

그리고 마지막으로 MSDN에 나와있는 예제를 하나 보도록 하겠습니다. 

type MilkOption =
   | Nonfat
   | TwoPercent
   | Whole
   | Soy
   | Rice
  
type FlavorOption = string
  
type Brand = string

type Size =
   | Short
   | Tall
  
type TeaFlavor = string
type Shots = int

type CoffeeType =
   | Drip
   | EspressoShot
   | Cappuccino
   | Latte of Size * MilkOption * Shots
   | FlavoredLatte of Size * MilkOption * FlavorOption * Shots

type Drink =
   | Can of Brand
   | Coffee of CoffeeType
   | Tea of TeaFlavor

let drink1 = Can("Coke")
let drink2 = Coffee(Drip)
let drink3 = Coffee(Latte(Tall, Nonfat, 2))
// A single short soy latte with hazelnut
let drink4 = Coffee(FlavoredLatte(Short, Soy, "Hazelnut", 1))

union을 통해서 커피가 캔인지 뽑은 커피인지, 커피이외의 차종류인지부터 시작해서 커피의 종류에서, 사이즈, 샷의횟수등 까지 절묘하게 조합하는 모습을 보실 수 있습니다.

 

- 정리하며

F#은 이렇게 union을 쉽게쓸 수 있는 언어적 특성덕분에 DSL(Domain Specific Language, 다른말로 Language Oriented Progamming이라고도 함)을 잘 지원할 수 있는 능력이 있습니다. 물론 DSL은 그리 쉬운 주제는 아니지만, F#과 함께 천천히 시작해보는 것도 나쁘진 않을 거 같습니다. DSL이나 LOP에 대해서 더 설명을 드릴 수 있으면 좋겠지만, 내공이 허락치 않는군요-_-;;;;;;;;;;


- 참고자료

1.  http://msdn.microsoft.com/en-us/library/dd233226(VS.100).aspx
2.  http://sdasrath.blogspot.com/2009/02/20090220-f-types-discriminated-unions.html
3. Expert F#,  Don Syme, Adam Granicz, Antonio Cisternino, Apress

일곱,여덟번째로 드디어 마지막입니다. ㅠㅠ

역시나 Q&A가 이어지고, 끝에 선물을 주네요.


그 동안 시청해주셔서 감사합니다. 조만간 새로운 내용으로 다시 돌아오겠습니다. ^^

p.s. 필요하다는 분이 계서서 이제까지의 자막 파일들 첨부합니다.


Welcome to F#(10) - 인도음식 카레.....?

F# 2009. 7. 3. 13:39 Posted by 알 수 없는 사용자

- 카레랑 F#이랑 뭔 상관이야.

우리나라말로 카레. 영어로 curry인거죠. F#에선(함수형 언어에선) 카레를 맛보실 수 있습니다. 음미하고 먹으려면 좀 복잡한 과정을 거쳐야 할지도 모르지만요. 그래서 기꺼이 드셔보시고자 하시는 분들. 어떻게 먹는지 천천히 이야기 해보시죠 캬캬캬캬캬...


- 모야 먹는거 아니자나+_+

Curry는 수학과 컴퓨터과학에서 사용되는 특정한 기술을 가리키는 말로서, 미국의 수리논리학자였던 Haskell Brooks Curry의 이름을 따서 지어졌다고 합니다. Haskell이라는 언어도 Haskell Brooks Curry의 이름을 따서 만들어졌죠. Curry는 함수형 프로그래밍의 기초를 쌓았던 사람중의 한명이라고 합니다. 아마도 그래서 함수형언어중에 그의 이름을 딴 언어와 기능이 있는것 같습니다.

Curry의 사후에 새로만들 언어의 이름을 Haskell로 하기로 정하고 그의 미망인에게 가서 언어의 이름을 Haskell로 정해도 좋겠냐고 하자 흔쾌히 허락하면서도 그가 한번도 Haskell이라는 이름을 좋아한 적이 없었다고 말했다는 군요. 본인이 좋아했든 안했든 Haskell과 Curry라는 이름은 프로그래밍언어의 역사속에서 영원히 기억되겠죠. 아... 행복한 사람이구만 ㅋㅋㅋ. 완전 부럽네. -_- 

어쨌든 currying은 "다수개의 인자를 받는 함수를 하나의 인자를 받는 함수로 만들고 나머지 인자를 받는 함수를 리턴하는 변환의 절차"라고 합니다. 무슨 말인지 이해가 가시나요? 음-_-;; 간단히 알아보도록 하죠. 


위의 그림을 보시면, 우선 add라는 인자 두개를 받아서 더한 결과를 리턴하는 함수를 선언한 걸 보실 수 있습니다. 즉, "add 3 5" 같은 형태로 사용하는거 겠죠. 하지만, currying을 하게되면, 다수개의 인자(a, b 두개)를 받는 함수(add)를 하나의 인자(a)를 받는 함수로 만들고 나머지 인자(b)를 받는 함수를 리턴하게 할 수 있습니다. 다음 그림이 바로 그 내용이죠. 


보시면 add5는 add 5의 결과, 즉 "add a b"에서 a에 5를 넣은 "add 5 b"를 가리키게 됩니다. 즉, 커리의 정의에 따르면, add5는 여러개의 인자를 받는 함수(add)를 하나의 인자를 받는 함수로 변환해서(add 5) 나머지 인자를 받는 함수를 리턴합니다.

위 사진에서 add5의 타입을 보시면, (int -> int), int하나를 받아서 int를 리턴하는 함수임을 보여주고 있습니다. 하지만 add5는 받는 인자가 없습니다. 즉, "add 5 b"에서 인자 하나를 제외한 나머지 b를 add5가 인자로 받아서 5 + b의 결과를 리턴하는 함수라는 말이죠. 


그리고 result에 "add5 10"의 결과를 대입합니다. 그 결과는 add함수의 나머지 하나의 파라미터에 10을 집어넣은 즉, 5 + 10의 결과값인 15가 들어가겠죠.

 

 

위 그림에서 그 결과를 확인하실 수 있습니다. 위의 단계들을 그림으로 설명해보면 아래와 같습니다.

 

 

그리고 실제로 생성되는 IL코드를 통해서도 한번 확인해보도록 하겠습니다.

 

 

빌드한 코드를 ildasm을 통해서 보고있는건데요. 신기한건, add5가 클래스의 형태로 되어있다는 겁니다. ".ctor"은 생성자를 의미하죠. 그리고 멤버변수로 a가 들어가 있습니다. "add5 = add 5"가 클래스의 형태로 만들어지고 5는 멤버변수로 저장되어 있다가 나중에 호출될때 사용되는거 같군요. 그러면 add5의 호출부분인 Invoke쪽을 보겠습니다.

 

 

빨간박스로 표시된 부분을 위에서 부터 차례대로 보시면 add5는 "b"라는 int32형 인자를 하나 받아서 호출됩니다. 그리고 멤버변수인 a를 로드하구요, 그 둘을 가지고 add메서드를 호출합니다. 그렇습니다. 내부적으로는 이렇게 처리를 하는군요.

제가 왜 이렇게 curry에 대해서 설명을 드리는고 하니, 바로 F#의 기반에 그 curry가 깔려있기 때문이죠. 아래의 그림에서 뭔가 이상한걸 느끼셨다면, 바로 그게 curry입니다.

 

 

즉, "->'이게 들어가있으면 함수라는 이야기 인데, "add a = a + 5"같은 함수라면, 아... 이게 정수를 하나받아서 거기에 5를 더한 정수를 하나 리턴하는 구나.... 해서 "int -> int"라는게 이해가 되는데, 어째서 "add a b = a + b"는 "int -> int -> int"일까요? 그렇습니다. 내부적으로 curry를 사용하고 있기 때문입니다.

즉, "add 3 5"라고 해주더라도 curry를 통해서 "add 3 "을 통해서 3을 인자로 받고 정수형 인자 하나를 받는 함수를 리턴합니다. 그리고 그 함수에 5를 넘겨줘서 결과값인 8을 얻게 됩니다. 그래서 int를 받아서 "int -> int"인 함수를 리턴하고, 그 "int -> int"인 함수에 다시 int를 하나 넘겨줘서 결과로 int를 받는거죠. 이번에도 그림으로 정리해보면 아래와 같습니다.(별 도움이 안되는거 같지만 정성을 생각해서 자비좀....-_- ㅋㅋㅋ)

 

 

- 정리하며

넵, 오늘은 curry에 대해서 알아봤습니다. 충분히 설명을 못드린거 같아서 좀 불편한 마음이 있군요. 모든건 제 책임이니 저에게 따스한 격려를(?)....... 암튼, 이렇게 curry를 이용하게 되면, 위에서 보셨듯이 하나의 함수에서 새로운 함수들을 계속 해서 만들어 낼 수 있고, 그렇게 함수를 프로그램을 만들어가는 building block으로 사용할 수 있습니다. 더 구체적인 예를 드리지 못해서 아쉽군요. 더 공부해서 내공이 허락한다면 더 설명드리도록 하겠습니다.

 

- 참고자료

1. http://geekswithblogs.net/Podwysocki/archive/2008/02/21/119880.aspx
2. http://diditwith.net/2007/08/15/TheArtOfCurrying.aspx
3. http://www.dotnetrocks.com/default.aspx?showNum=310

Welcome to Dynamic C#(3) - 마음이 넒어진 C#

C# 2009. 6. 26. 08:58 Posted by 알 수 없는 사용자
- 대인배 모드

C#은 점점 더 마음이 넓어지고 있습니다. F#이라는 조금은 독특하지만 머리좋은 친구가 좋은 기능을 소개해주기도 하구요(C# 2.0의 Generics는 F#의 배후에 있는 Don Syme이 제안한거라는 군요), 팬들이 많아지면서 점점 더 넓은 마음을 갖추게 되었습니다. 그리고 대인배 모드에 또 중요한 역할을 해주는게 있는데요 Co- Contravariance입니다.

우선 그다지 친근하지 않은 이름이네요. 이건 대체 뭘까요? 일단 정리해서 말씀드리면, C# 3.0에서 불필요하게 캐스팅을 하면서 해야 했던 작업을 매우 편하게 할 수 있도록 도와주는 C# 4.0의 새로운 기능입니다. C# 3.0에서 못하게 막았던 부분중에서 문제를 일으킬 가능성이 없는 부분에 대해서는 편리하게 사용할 수 있도록 지원해준다는 말인데요. 뭔가 딱 듣기만 해도 대인배스러운 느낌이 들지 않나요 ㅋ. 무슨 이야기 인지 예제를 보면서 확인해보겠습니다. Eric Lippert의 기가막힌 글이 있는데요, 그 글을 참고로 하면서 작성한 글입니다.(링크는 아래 참고자료쪽에!) 


- 예제를 내놓지 않으면 구워먹겠다.

일단, 동물들에게 먹이를 주는 메서드를 통해 알아보도록 하지요. 아래와 같은 코드를 작성합니다.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Co_ContraVariance
{
    class Animal
    {
        public bool Hungry { get; set; }

        public override string ToString()
        {
            return "Animal";
        }
    }

    class Mammal : Animal
    {
        public override string ToString()
        {
            return "Mammal";
        }
    }

    class Giraffe : Mammal
    {
        public override string ToString()
        {
            return "Giraffe";
        }
    }

    class Tiger : Mammal
    {
        public override string ToString()
        {
            return "Tiger";
        }
    }

    class Program
    {
        void FeedAnimals(IEnumerable<Animal> animals)
        {
            foreach (Animal animal in animals)
            {
                if (animal.Hungry)
                {
                    Feed(animal);
                }
            }
        }

        private void Feed(Animal animal)
        {
            Console.WriteLine(animal.ToString());
        }

        static void Main(string[] args)
        {
            List<Giraffe> giraffes = new List<Giraffe>{
                new Giraffe{ Hungry = true},
                new Giraffe{Hungry = true},
                new Giraffe{Hungry = false}
            };

            Program program = new Program();
            program.FeedAnimals(giraffes);
        }
    }
}



딱히 잘못된 부분이 보이지 않는 코드입니다. 하지만, vs2008에서는 아래와 같은 에러가 납니다.

 


즉, 다른 타입이므로 메서드를 오버로드하라는 이야기지요. Giraffe는 Animal의 서브타입이므로 문제가 없습니다만, IEnumerable<Giraffe>는 IEnumerable<Animal>과 담고있는 요소의 타입이 다를뿐 어떤 관계도 없습니다. 그래서 IEnumerable<Giraffe>에서 IEnumerable<Animal>로는 형변환이 안되는 것이죠. 그래서 아래와 같은 코드를 통해 간접적으로 형변환을 해줘야 합니다.

program.FeedAnimals(giraffes.Cast<Animal>()); 


 
그런데, 안전한 경우에 한해서 이런게 잘 되게 해주겠다는 게 C#4.0의 이야기입니다. 일단 실행결과를 보시죠.

 

 

C#4.0으로 짠 코드는 잘 실행되는게 보이시죠? 그렇습니다. Covariance를 통해서 코드가 잘 실행된 것입니다. 그러면 이런 Covariance와 Contravariance에 대해서 좀 더 알아보죠.

일단, 간략하게 정의를 한번 내려보도록 하겠습니다.

우선 어떤 타입 T와 U가 있다고 했을때, 다음중 하나는 참이 됩니다.

1. T는 U보다 크다
2. T는 U보다 작다
3. T와 U는 같다
4. T와 U는 서로 관련이 없다.

위의 코드에서 보듯이, Giraffe는 Mammal의 서브타입이므로 Mammal보다 작습니다. 하지만, Giraffe는 Tiger와는 아무관련이 없는 타입이죠. 이런 타입간의 관계에서 어떤 연산을 T와 U에 대해서 수행했을때, 그 결과로 나온 T'와 U'가 T와 U의 관계를 그대로 유지한다면, 그연산은 covariant하다고 이야기 할 수 있으며, 대입의 방향성과 크고작음을 뒤집고 같음과 관계없음만 그대로 유지한다면(위 리스트에서 1,2번을 뒤집고 3,4번만 유지한다면) 이 연산은 contravariant하다고 이야기 할 수 있습니다.


잘 이해가 되시나요? 무슨 꼭 수학의 증명같은 냄새가 나서 거부반응이 일어나신 분들도 있을거 같군요. 그럼, 예제를 통해 차근차근 설명드리도록 하겠습니다.

 

 public interface IEnumerable<T> : IEnumerable
    {
        // 요약:
        //     Returns an enumerator that iterates through the collection.
        //
        // 반환 값:
        //     A System.Collections.Generic.IEnumerator<T> that can be used to iterate through
        //     the collection.
        IEnumerator<T> GetEnumerator();
    }

위 코드는 C#3.0의 IEnumerable의 정의인데요. 이 인터페이스에서 형식매개변수인 T는 GetEnumerator를 통해서 리턴될때만(output position에서만) 사용되는 걸 볼 수 있습니다. 즉, T의 요소를 편집할 방법이 없다는 이야기지요. 이런 경우는 형식매개변수의 대입의 방향성을 유지한 상태에서 IEnumerable<Giraffe>에서 IEnumerable<Animal>같은 형변환을 가능하게 해주겠다는 이야기 입니다.

 

- 대입의 방향성

Giraffe는 Animal의 서브타입입니다. 그렇다면 아래와 같은 코드가 가능하죠.

Animal animal = new Giraffe;

즉, Animal이 Giraffe보다 더 큰(상위) 타입이기 때문에 가능하죠. 하지만 아래의 코드는 컴파일되지 않습니다.

Giraffe giraffe = new Animal();

아래와 같이 하면 컴파일은 문제가 없습니다.

Giraffe giraffe = (Giraffe)new Animal();

하지만, 런타임에서 형변환이 불가능하다고 하면서 예외가 발생되죠. 즉, Animal이 더 크기 때문에, Giraffe는 Animal에 대입될 수 있지만, Animal은 Giraffe에 대입될 수 없습니다. 이게 크고작음에 관련된 대입의 방향성입니다.

단, Giraffe와 Tiger는 둘다 Mammal의 서브타입이지만, 둘사이에는 아무관련이 없습니다.



즉, 이야기를 이어 가자면 Giraffe가 Animal에 대입가능하기 때문에, 형식매개변수가 리턴될때만(output position에서) 사용된다면, 대입의 방향성을 유지한상태에서는 IEnumerable<Giraffe>에서 IEnumerable<Animal>로 변환을 하는것 같이 참조형변환을 지원해주겠다는 이야기 입니다.

 
반대로, Contravariance는 파라미터로 받기만하는 경우에만 사용할 수 있습니다. 그리고 대입의 방향성 역시 반대로 뒤집어 버립니다.

 public interface IComparer<T>
    {
        // 요약:
        //     Compares two objects and returns a value indicating whether one is less than,
        //     equal to, or greater than the other.
        //
        // 매개 변수:
        //   x:
        //     The first object to compare.
        //
        //   y:
        //     The second object to compare.
        //
        // 반환 값:
        //     Value Condition Less than zero x is less than y.  Zero x equals y.  Greater
        //     than zero x is greater than y.
        int Compare(T x, T y);
    }


위 코드는 특정타입에 대해서 비교를 지원해주고 싶을때 구현하는 인터페이스인데요, 여기도 역시 보시면, 형식매개변수인 T는 Compare메서드에서 비교할 인자를 받는 곳(input position)에서만 사용되는 걸 볼 수 있습니다. 예제를 위한 예제가 될 수 도 있지만, IComparer<T>를 통해서 contravariance를 설명해보죠~. 

위에서 작성한 코드에 아래와 같은 코드를 추가합니다. 

    class AnimalComparer : IComparer<Animal>
    {
        public int Compare(Animal x, Animal y)
        {
            return 1; //예제를 위해 ㅋ.
        }
    }

    class GiraffeComparer : IComparer<Giraffe>
    {
        public int Compare(Giraffe x, Giraffe y)
        {
            return 1; //예제를 위해 ㅋ.
        }
    }

.......중략.......

        static void Main(string[] args)
        {
            ........중략.......

            IComparer<Animal> animalComp = new AnimalComparer();
            IComparer<Giraffe> giraffeComp = animalComp;
            Console.WriteLine(giraffeComp.Compare(new Giraffe(), new Giraffe()));
        }



각각 IComparer<Animal>과 IComparer<Giraffe>를 구현한 비교 클래스입니다. 그리고 IComparer<Animal>을 IComparer<Giraffe>에 대입하고 있습니다. 그리고 아무문제없이 컴파일 됩니다. 그리고 실행도 문제없이 됩니다.



Animal은 Giraffe보다 더 큰 데 어떻게 IComparer<Giraffe>에 들어가는 걸까요? 그냥 상식적으로 생각했을때 동물을 비교할 수 있다면, 기린(giraffe)을 비교할 수도 있겠죠? 사람들이 IComparer<Giraffe>에 비교하려고 넣는 객체는 모두 Giraffe타입이겠고 giraffeComp가 실제로 호출하게 되는 Compare메서드는 IComparer<Animal>을 구현한 animalComp의 메서드겠죠. 그래서 방향성이 뒤집혔지만, contravariance로 인해서 실행가능한 코드가 됩니다.

반대로 IComparer<Animal>에다가 IComparer<Giraffe>를 대입하는 경우를 생각해보죠. 그렇다면 사람들은 animalComp를 통해서 Animal을 비교하고 싶어할텐데, 실제로 호출될 메서드는 IComparer<Giraffe>의 Compare메서드겠죠. 그 메서드는 Giraffe타입을 받을 수 있으므로 Animal을 받을 수 없습니다. 그래서 이런 참조형변환은 지원되지 않습니다.

즉, contravariance는 형식인자가 파라미터로 입력되는 부분에서만(input position에서만) 쓰일때, 대입의 방향성을 뒤집는 참조형변환을 지원해주겠다는 이야기 입니다. 일단은 여기까지가 co- contravariance에 대한 간략한 설명입니다. 


- 대인배 만쉐이 ㅋ

암튼, 점점 더 대인배가 되어가는 C#의 모습을 살짝 엿보았습니다. 어떻게 보면, 그냥 직관적으로 할 수 있는 부분들에 대해서 제약을 풀어준 셈이니까 대인배전략에 걸맞는 기능인 거 같습니다. 물론 마냥 낙관적인 것만은 아닙니다만. 성격좋은 사람도 나름의 규칙은 있는 법이니까요. 안전하고 적절할 co- contravariance의 사용은 "들어가는 거(형식매개변수)는 contravariant일 수 있고, 나가는 거(return되는)는 covariant일 수 있다."라는 군요. 그렇지 않은 경우도 있다는 말이겠죠. 제 내공이 허락한다면 이부분에 대해서도 정리해서 올리도록 하겠습니다. 대인배 C# 만쉐이 캬캬캬.

 

- 참고자료

1. http://blogs.msdn.com/ericlippert/archive/2007/10/16/covariance-and-contravariance-in-c-part-one.aspx
2. http://blogs.msdn.com/ericlippert/archive/2007/10/17/covariance-and-contravariance-in-c-part-two-array-covariance.aspx
3. http://blogs.msdn.com/ericlippert/archive/2007/10/19/covariance-and-contravariance-in-c-part-three-member-group-conversion-variance.aspx
4. http://blogs.msdn.com/ericlippert/archive/2007/10/22/covariance-and-contravariance-in-c-part-four-real-delegate-variance.aspx
5. http://blogs.msdn.com/ericlippert/archive/2007/10/26/covariance-and-contravariance-in-c-part-five-interface-variance.aspx
6. New features in C# 4.0, Mads Torgersen

여섯번째입니다.

이미징 데모 설명과 시연을 끝내고 전체 요약 후 질답 세션으로 넘어갑니다.


혹 자막이 안보이시는 분은 유투브 플레이어에서 CC(Turn on Captions)를 활성화해주시면 보일겁니다.
(임베드 태그에서 기본으로 보이도록 설정했는데 왜 기본으로 안나오는지 모르겠군요;)

Welcome to F#(9) - 메이져 데뷰.

F# 2009. 6. 12. 16:25 Posted by 알 수 없는 사용자
-뒷북이냐

어느덧 비주얼스튜디오 2010 베타1이 나온지도 거의 한달이 다되어 가네요. 그동안 뭐가 바뀌었는지 간략한 소개도 못드렸었군요. 뒷북이라 느끼실 수도 있겠지만, 간략하게 비주얼스튜디오 2010 베타1에서 F#이 어떻게 무명시절의 설움을 딛고 일어서고 있는지 소개해드리려고 합니다.




-메이저데뷰

개인적으로 가장 중요하다고 생각하는 점은 F#이 무명시절의 설움을 딛고 메이져데뷰를 했다는 거죠. 이제 당당하게 비주얼 스튜디오 시작시에 나오는 스플래시 화면에도 이름을 올리고, 비주얼 스튜디오를 깔고 처음실행하면 나오는 기본개발환경설정 선택창에서도 Visual F#을 보실 수 있습니다.




캬. 그리고 새 프로젝트를 눌러서 들어가보면 Visual F#이 메인에 나오고요 C#과 VB.NET은 "Other Languages" 카테고리로 분류가 됩니다. 좋네요. 참고로 F# Interactive도 기본으로 뜹니다. 


그리고 비주얼 스튜디오 2010 베타1에 포함된 F#은 약간 버전업이 되었는데요(1.9.6.2 -> 1.9.6.16) 아래 그림을 비교해보시면, F#의 버전과 닷넷프레임워크 버전이 바뀌었음을 확인해볼 수 있습니다.

(2008)
(2010)


그리고 이번버전부터 PowerPack을 따로 받아서 깔도록 바뀌었습니다. 그래서 F# Interactive에서 #r 해서 PowerPack.dll을 로드하려고 해도 dll을 찾아오지를 못하는데요, 그래서 따로 다운을 받아서 복사를 해줘야 합니다.  여기에서 받을 수 있구요~ "C:\Program Files\Microsoft F#\v4.0" 이 경로에 복사해서 넣어주면, F# Interactive에서 기존처럼 #r "FSharp.PowerPack.dll";; 구문으로 추가할때도 자동으로 찾아서 추가해줄 수 있습니다. 그리고 기존처럼 비주얼스튜디오 2008에서도 베타1에 추가된 1.9.6.16버전을 사용할 수 있는데요, 여기에서 다운받으실 수 있습니다.


그동안 6개월동안 커뮤니티의 피드백을 받아서 F#언어와 컴파일러의 버그를 잡고 구조와 성능을 개선하는데 집중했다고 합니다. #light가 이제는 기본으로 설정되는 것과 .NET 4.0의 BingInteger와 연동이 잘되고, params타입을 사용하는 메서드를 호출하거나 만들수있게 되었고, 라이브러리의 이름이나 표현을 표준에 맞게 수정하면서 타입파라미터가 대문자로 바뀌는 등의 변화가 있었습니다.


(소문자였던 타입 파라미터가)

(대문자로 바뀌었음)



-이게 다야?

사실, 더 자세하게 하나하나 분석해드릴 수 있으면 좋으련만, 공부한지 얼마 안되는지라 뭐가 자세하게 바뀐건지 감은 잡혀도 확실하게 설명드리지 못하는 점이 조금은 죄송스럽군요;;;
여기에서 추가되거나 바뀐 내용들을 자세하게 보실 수 있습니다.

F#이 도대체 왜 비주얼스튜디오에 정식으로 추가된 걸까요? 기존에도 J#등과 같은 언어가 추가되었다가 소리소문없이 사라지기도 했었습니다만, F#도 그런걸까요? 사실 저는 함수형언어에 기존의 언어들이 갖지 못한 장점들이 있고 C#이나 VB.NET이 멀티패러다임을 지향하면서 함수형,동적 언어들의 장점을 취합하고 있지만 함수형언어 고유의 영역을 제대로 커버하는건 힘든게 아닌가 싶었습니다. 그래서 F#이 추가되는 걸 그런 점에서 봤었습니다만, 스터디를 이끌고 계시는 K님의 말씀을 듣던 중 새로운 점을 하나 발견하게 됐습니다.

패션쇼를 예를 들어주셨는데요, 제대로 옮기는지는 확실치 않지만 대략 '패션쇼에서 독특한 옷들 입고 나와서 모델들이 걸어다닌다고 해서 그 옷이 바로 백화점이나 옷가게 진열장에 걸리는건 아니다, 앞으로의 가능성과 방향을 제시하는 의미가 있는거다' 같은 말씀이였습니다. 그리고 함수형언어가 그런면이 있어서 그동안 함수형언어의 발전적인 개념들이 현업에서 쓰는 언어에 하나씩 추가되기도 하는거라고 말이죠(LINQ같이).

이 말을 듣고 나닌 Paul Graham이 왜 그토록 Lisp을 최고로 치면서 시간이 지나면 사라질 언어말고 언어계층의 뿌리에 해당하는, 그래서 시간이 지나도 가치가 변하지 않을 Lisp같은 언어에 집중하라고 말을 했는지 알것 같기도 했습니다.

F#이 메이져 데뷰를 하면서 그걸통해 닷넷프레임워크에서 돌아가고 서로간에 호환이 가능한 함수형언어를 확보하는 동시에, F#을 통해서 시험적인 요소들의 가능성도 보고 닷넷을 더 발전적인 형태로 가져가기 위한 시도가 아닌가 하는 생각이 들었습니다.

제대로 설명한건지는 확신이 안서지만 어쨌든, 기존의 함수형언어의 팬들이 F#을 통해 뭔가를 많이 시도하고 즐긴다면 닷넷이 더욱 풍성해지는 거겠죠~~~~.

-참고자료
1. http://blogs.msdn.com/dsyme/default.aspx

다섯번째입니다. 이제 끝이 보이네요;
많이 늦었죠? 죄송합니다. 출장 때문에 한 2주동안 바빴습니다.

이번 회에서는 Asynchronous Agents Library에 대해 더 자세히 살펴보고 실제 적용 예를 보여줍니다.


그 사이 VS2010 베타1의 발표와 함께 많을 자료들이 쏟아져 나왔는데요. AAL 관련해서도 유용한 글들이 보이더군요.



AAL로 액터 기반 병렬 프로그래밍을 경험해보세요!